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quantile of the portfolio’s return distribution, where generally :5 < a < 1; that is, the
minimum potential loss that will be sustained with a probability a. Since the BIS
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The experience from the global financial crisis has raised serious concerns about the accuracy of standard
risk measures as tools for the quantification of extreme downward risks. A key reason for this is that risk
measures are subject to a model risk due, e.g. to specification and estimation uncertainty. While regula-
tors have proposed that financial institutions assess the model risk, there is no accepted approach for
computing such a risk. We propose a remedy for this by a general framework for the computation of risk
measures robust to model risk by empirically adjusting the imperfect risk forecasts by outcomes from
backtesting frameworks, considering the desirable quality of VaR models such as the frequency, indepen-
dence and magnitude of violations. We also provide a fair comparison between the main risk models
using the same metric that corresponds to model risk required corrections.
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1. Introduction

Recent crises have laid bare the failures of standard risk models.
High levels of model risk caused models to under forecast risk prior
to crisis events, to be slow to react as a crisis unfolds, and then slow
to reduce risk levels post-crisis. It is as if the risk models got it
wrong in all states of the world. Addressing this problem provides
the main motivation for our work. In particular, we explicitly
adjust risk forecasts for model risk by their historical performance,
so that a risk model learns from its past mistakes. While our focus
is on Value-at-Risk (VaR),1 the analysis applies equally to other risk
measures such as expected shortfall (ES).
While there is no single definition of model risk.2 it generally
relates to the uncertainty created by not knowing perfectly the true
data generating process (DGP). This inevitably means that any prac-
tical definition is linked to such an uncertainty and thus is context
dependent. In our case, the end product is a risk forecast, so model
risk is the uncertainty in risk forecasting arising from estimation
error and the use of an incorrect model. This double uncertainty is
responsible both for the range of plausible risk estimates (see, e.g.
Beder, 1995), and more generally the inability to forecast risk with
acceptable accuracy.

To formalize this, in our view a risk forecast model should meet
three desirable criteria: the expected frequency of violations, the
absence of violation clustering and a magnitude of violations
consistent with the underlying distributional assumptions. These
three criteria provide the lens through which to view our empirical
results.

We can motivate our contribution by means of an example
represented in Fig. 1, where, for each day in a sample of the Dow
Jones (DJIA) index over a century, we show the outcomes from
applying state of the art VaR forecast methods. We also show
periodically which method generated the highest and the lowest
certainty
ough the
1998).
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Fig. 1. DJIA and the range of daily 99% VaR forecasts. Daily DJIA index returns from the 1st January, 1900 to the 20th September, 2011. We use a moving window of four years
(1040 daily returns) to dynamically re-estimate parameters for the various methods. The letters ‘‘H’’, ‘‘N’’, ‘‘t’’, ‘‘CF’’, ‘‘RM’’, ‘‘G’’, ‘‘CV’’, ‘‘GEV’’, ‘‘GPD’’ stand for, respectively,
historical, normal, Student, Cornish–Fisher, exponential weighted moving average (EWMA or RiskMetrics), GARCH, CAViaR, GEV and GPD methods for VaR calculation.
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forecasts. By highlighting the wide disparity between the most
common risk forecast methods, the figure illustrates one of the
biggest challenges faced by risk managers. Typically, the VaR does
not vary much, but when it does, it reacts sharply and belatedly to
extreme returns. The range of plausible VaR forecasts is large,
where the models producing the highest and lowest forecasts
frequently change position across time. Even right after WWII,
during a relatively quiet period for financial markets, the most
conservative VaR was four times the most aggressive one.

As in Daníelsson et al. (2014) and Daníelsson (2002) the main
conclusion from this brief analysis is that risk managers face a
large range of plausible forecast methods and their associated
model risk, having to choose between desirable criteria such as
performance, degree of conservativeness or forecast volatility. This
challenge motivates our main objective where we propose a
general method for the correction of imperfect risk estimates,
whatever the risk model.

We illustrate our approach by considering events around the
Lehman Brothers’ collapse, as presented in Fig. 2 for the period of
January 1st, 2007 to January 1st, 2009. The Figure displays
peaks-over-VaR for one-year rolling daily historical 99% VaR on
the S&P 500 index.

The figure shows that the hits are excessively frequent, highly
autocorrelated and, around October 2008, far from the estimated
VaR, even if it progressively adjusted after the hits. This suggests
that an optimal buffer would make the VaR forecast more robust.

However, it is not trivial to calculate the buffer, after all, the
properties of hits are significantly different in terms of frequency,
dependence and size, depending both on the underlying VaR model
and probability level as well as the magnitude of the buffer. A large
(respectively small) buffer correction will lead to a too conserva-
tive (too little) protection. The question for the risk manager is
then how to ex ante fix the size of this buffer, as illustrated by
the three arbitrary correction factors labelled #1, #2 or #3, on
the right-hand side y-axis in Fig. 2.

In the financial literature, a number of papers have considered
estimation risk for risk models, see for instance Gibson et al., 1999;
Talay and Zheng, 2002. The issue of estimation risk for VaR has been
considered for the identically and independently distributed return
case by, for example, Pritsker (1997) and Jorion (2007). Estimation
risk in dynamic models has also been studied by several authors.
Berkowitz and O’Brien (2002) observe that the usual VaR estimates
are too conservative. Figlewski (2004) examines the effect of estima-
tion errors on the VaR by simulation. The bias of the VaR estimator,
resulting from parameter estimation and misspecified distribution,
is studied for ARCH(1) models by Bao and Ullah (2004). In the iden-
tical and independent setting, Inui and Kijima (2005) show that the
nonparametric VaR estimator may have a strong positive bias when
the distribution features fat-tails. Christoffersen and Gonçalves
(2005) study the loss of accuracy in VaR and ES due to estimation
errors and constructed bootstrap predictive confidence intervals
for risk measures. Hartz et al. (2006) propose a re-sampling method
based on bootstrap to correct the bias in VaR forecasts for the Gauss-
ian GARCH model. For GARCH models with heavy-tailed distribu-
tions, Chan et al. (2007) derive the asymptotic distributions of
extremal quantiles. Escanciano and Olmo (2009, 2010, 2011) study
the effects of estimation risk on backtesting procedures. They show
how to correct the critical values in standard tests used, when
assessing the quality of VaR models. Gouriéroux and Zakoïan
(2013) quantify in a GARCH context the effect of estimation risk on
measures for estimation of portfolio credit risk and show how to
adjust risk measures to account for estimation error. Gagliardini
et al. (2012) propose estimation and granularity adjustments for
VaR, whilst Lönnbark (2010) derives adjustments of interval fore-
casts to account for parameter estimation.

In the context of extreme risk measures, our work also relates to
Kerkhof et al. (2010), who first propose an incremental market risk
capital charge calibrated on the backtesting framework of the
regulators. Our present work documents the proposed methodol-
ogy and complements their approach, generalizing the tests used
for defining the buffer. Alexander and Sarabia (2012) also explicitly
deal with VaR model risk by quantifying VaR model risk and
propose an adjustment to regulatory capital based on a maximum
relative entropy criterion to some benchmark density. In a similar
manner, Breuer and Csiszár (2013, 2014) and Breuer et al. (2012)
define model risk as an amplified largest loss based on a distribu-
tion which is at a reasonable, Mahalanobis or Kullback–Leibler,
distance to a reference density.



02/07 04/07 06/07 08/07 10/07 12/07 02/08 04/08 07/08 09/08 10/08 01/09
−10.0%

−8.0%

−6.0%

−4.0%

−2.0%

  0.0%
(a) Negative Returns and One−year rolling VaR at 99%

Negative Returns
1−year rolling historical VaR99%

02/07 04/07 06/07 08/07 10/07 12/07 02/08 04/08 07/08 09/08 10/08 01/09
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%
(b) Exceptions and various Adjusted Estimated VaR

← 1−year rolling
historical
VaR99%

← Adjusted
VaR99% #1

← Adjusted
VaR99% #2

← Adjusted
VaR99% #3

Fig. 2. S&P500 negative returns and daily 99% VaR forecasts around the 2008 Lehman Brothers’s event. Daily S&P500 index from the 1st January, 2003 to the 1st January,
2009. The figure presents peak-over-VaR based on the four-year rolling daily historical 99% VaR on the S&P 500 index, as well as corrected VaR estimates with various ad hoc
incremental buffers (numbered from #1 to #3).
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We start with a controlled experiment, whereby we simulate an
artificial long time-series which exhibits the salient features of
financial return data. We then estimate a range of VaR forecast
models with this data, both identifying model risk and more
importantly dynamically adjusting the risk forecasts with respect
to such risk.

The conclusions from this exercise lead us to a number of inter-
esting conclusions. First, by dynamically adjusting for estimation
bias we significantly improve the performance of every method,
suggesting that such an approach might be valid in routine appli-
cations of risk forecasting. Second, the model bias is large in gen-
eral, and sometimes to the same order as the VaR measure itself,
and very different across methods. Finally, the bias strongly
depends upon the probability confidence level. This suggests that
a commonly advocated approach of probability shifting—whereby
we estimate a model with one probability to better estimate a
VaR with a less extreme probability—is not valid.

The Monte Carlo results motivate our main contribution, the
development of a practical method for dealing with model uncer-
tainty. Since we do not know the ‘‘true’’ model, we instead learn
from history by evaluating the historical errors in order to use
them to dynamically adjust future forecasts. We reach a range of
empirical conclusions from this exercise.

1. The magnitude of corrections can sometimes be large, espe-
cially around the 1929 and 2008 crises, ranging from 0% to
15% for some methods to more than 100% in some
circumstances.

2. The EWMA3 and GARCH VaR are among the preferred models,
since the minimum correction to pass main backtests are among
the smallest.
3 The Exponentially Weighted Moving Average (EWMA) refers to JP Morgan’s
RiskMetrics proposed method (RiskMetrics, 1996), which consists of placing more
weight on the most recent observations than on the older ones when calculating
volatility (using an exponential moving average with an exponential factor tradi-
tionally fixed at .94 with daily data).
3. Regardless of the model, a ten year sample period is needed to
have a fairly good idea of the magnitude of the required
correction.

4. The model risk of the correction buffer can be measured and the
buffer fine-tuned according to the link between the confidence
level on the required correction. This enables risk managers to
explicitly tailor the buffer to major financial stress episodes
such as the Great Depression of 1929 or the 2008 crisis, if they
choose to do so.

5. By considering multivariate indexes and portfolios, we find that
the model risk adjustment buffer is in line with the multiple k
imposed by regulators (from 3 to 5).

6. The general methodology can be used to gauge the plausibility
of traditional handpicked stress-test scenarios.

The outline of the paper is as follows: Section 2 evaluates the
extent to which elementary model risks affect VaR estimates based
on realistic simulations. Section 3 proposes a practical method to
provide VaR estimates robust to model risk. Section 4 finally con-
cludes, whilst the Appendix follows, outlining some description
and examples of model risks and the main backtesting methods
used in the paper.

2. Analysis of estimation and specification errors

Consider a general setting where we know the ‘‘true’’ VaR (best
case scenario), but where the sample size is so small that it entails
some estimation problems. In this case, the estimated VaR will
inevitably be an imperfect estimate of the theoretical (‘‘true’’)
VaR. In particular, there exists a bias function, denoted
biasðh0; ĥ;aÞ, that makes the equality between the theoretic and
empirical exact4:

ThVaRðh0;aÞ ¼ EVaRðĥ;aÞ þ biasðh0; ĥ;aÞ; ð1Þ
4 The bias function is implicitly defined from Eq. (1). See the Appendices for
examples of such bias functions in various contexts of model risks.



5 See Hamilton and Susmel, 1994; Gray, 1996; Klaassen, 2002; Haas et al., 2004, for
more details on the process.

6 As a complement (not reported here for space reasons, but available on demand
in a web Appendix), we also made use of other alternative frameworks: a Student
versus a normal density, as well as Brownian, Lévy and Hawkes processes, with the
same qualitative response with a relative model error for VaR ranging from 5% to 15%
in the simplest cases (Gaussian estimation risk with 250 observations) to as large as
200% when the process is complex and the sample small (the case of Hawkes
processes).

7 The estimated parameters of the MS(2)-GARCH(1,1) model on the DJI Index are
x1 ¼ 3:1699e�006; b1 ¼ 0:90801, a1 ¼ 0:0733081; x2 ¼ 2:509e�005,
b2 ¼ 0:10453; a2 ¼ 0:0064734; l1 ¼ 0:00, l2 ¼ 0:00; t ¼ 5:56; p11 ¼ 0:99654 and
p22 ¼ 0:99328. Bauwens et al. (2010) obtain approximately the same results on the
S&P. This estimation is crucial since the transition probabilities between states and
auto-regressive parameters both affect the persistence of the simulated processes.
Our estimates are here very similar to those exhibited in the literature (e.g. Bauwens
et al., 2010; Billio et al., 2012; Frésard et al., 2011). Moreover, when artificially
considering different probabilities related to the second state, we find the same
qualitative results in what we are interested in: model risk of risk models. Last but not
least, when we have adopted other representations of financial returns (either using
processes or densities), we again reach the same order of magnitude of the worst
errors of forecasting (additional results available upon request).
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where ĥ denotes the estimated parameters, h0 the true parameters
and a the probability level of the VaR. The theoretic true VaR is
denoted by ThVaRðh0;aÞ and the estimated VaR by EVaRðĥ;aÞ.

This general Eq. (1) can be written more precisely in the context
where we know the DGP (up to the parameter h0)’’, e.g. in simula-
tion exercises. In this case, we can also know the general bias
which depends on some parameters so that this bias is now
denoted biasðh0; ĥ;aÞ. In this setting (when the DGP is known),
we also know the bias function, and thus the Perfectly Estimated
Adjusted VaR is indeed estimated via the bias, which itself depends
upon some nuisance parameters (such as, for instance, the window
length for the dynamic estimation. . .). We can therefore obtain the
perfect estimation adjusted VaR (PEAVaR), with the estimated VaR
(EVaRðĥ;aÞ), by:

PEAVaRðĥ; h0;aÞ ¼ EVaRðĥ;aÞ þ biasðh0; ĥ;aÞ: ð2Þ

As a general rule, the smaller a is, the better we forecast VaR
and identify the bias function. The reason is that, for a given sam-
ple size, the number of quantiles increases along with decreasing a,
so the effective sample size used in the forecasting exercise
increases. As the probabilities become more extreme, the accuracy
of the VaR forecasts decreases, for example, because fewer obser-
vations are used in the estimation. Consequently, it is harder to
model the shape of the tail than the shape of the interior distribu-
tion. For this reason, it might be tempting to forecast VaR slightly
closer to the center of the distribution, perhaps at a ¼ 95%, and
then use those estimation results to get at the VaR for more
extreme probability levels, like a ¼ 99% or a ¼ 99:9%. This is often
referred to as probability shifting.

2.1. Probability shifting

We can analyze the impact of probability shifting within our
framework by defining two random probabilities, ~a� and ~a��, so
that:

PEAVaRðĥ; h0;aÞ ¼ EVaRðĥ; ~a�Þ ¼ ThVaRðh0; ~a�Þ
EVaRðĥ; ~a��Þ ¼ PEAVaRðĥ; h0;aÞ ¼ ThVaRðh0;aÞ;

(
ð3Þ

or equivalently, with Fð�Þ and bFð�Þ representing, respectively, the
theoretic and estimated cumulative density functions:

~a� ¼ F½bF�1ðaÞ�
~a�� ¼ bF ½F�1ðaÞ�;

(
ð4Þ

with bF�1ðaÞ ¼ EVaRðĥ;aÞ and F�1ðaÞ ¼ ThVaRðh0;aÞ.
If one were to use ~a� instead of a, the bias adjusted VaR results,

whilst ~a�� achieves the opposite, mapping the probability
corresponding to the biased VaR, to the theoretic VaR.

It follows that if ~a� > a > ~a��, the estimated VaR is biased
towards zero, whilst if ~a� < a < ~a��, it is biased towards minus
infinity.

2.2. Monte Carlo examination

Many potential sources of error can significantly impact on the
accuracy of risk forecasts. The sources one is most likely to encoun-
ter in day-to-day risk forecasting, and certainly in most academic
studies, are estimation and specification errors. For this reason,
we investigate these two in detail by means of Monte Carlo
experiments.

We consider below the distribution of the errors between the
poorly estimated VaR and the true VaR when considering, alterna-
tively, estimation risk, specification uncertainty or both. We first
specify a DGP from which we generate data. We then treat the
DGP as unknown and forecast VaR for the simulated data.
As before, the true parameters are h0, but we now also have the
true parameters of the misspecified model, indicated by h1, as well
as its estimate ĥ1. In this case, we indicate the estimated VaR by
EVaRðĥ1;aÞ and define the perfect model risk adjusted VaR
(denoted herein PMAVaR) by:

PMAVaRðĥ1;aÞ ¼ EVaRðĥ1;aÞ þ biasðh0; ĥ1;aÞ: ð5Þ

We first present the theoretical framework related to the
correction procedure in a static setting for the sake of simplicity.
However, in the subsequent empirical application, we also con-
sider the dynamic properties of our correction procedure that is
proposed at date t based on the conditional information available
at date t � 1.

2.2.1. The true model
The DGP needs to be sufficiently general to capture the salient

features of financial return data. Because we are not limited by
the need to estimate a model, we can specify a DGP that might
be difficult, to the point of impossible, to estimate in small
samples. The DGP we employ is a second order Markov-switching
generalized autoregressive conditionally heteroskedastic with
Student-t disturbances (hereafter denoted MS(2)-GARCH(1,1)-t)5

as in Frésard et al. (2011) in a VaR context.6

More precisely, the DGP is:

rt ¼ lst
þ rst zt ; ð6Þ

where the zt innovations series are independently and identically
distributed as a standard Student distribution with t degrees of
freedom (zt � iidStð0;1; tÞ), and r2

st
¼ xst þ ast e2

t�1 þ b2
st
r2

st�1
, with

st 2 f1;2g characterizes the state of the market, lst
is the mean

return and with t degrees of freedom, and where
xst > 0; ast P 0; bst

P 0 are the parameters of the GARCH(1,1) in
the two states, and et ¼ rt � lst

the return innovations with the
fat tails of a Student density with a t degree of freedom.

The state is modelled with a Markov chain whose matrix of
transition probabilities is defined by pij ¼ Prðst ¼ jjst�1 ¼ iÞ. Appro-
priately chosen restrictions on the GARCH coefficients ensure that
r2

t is strictly positive.
Using this DGP, we first simulate a long artificial series of

360,000 daily returns with estimated parameters on the daily DJIA
from the 1st January, 1990 to the 20th September, 2011.7 We then
forecast various VaRs using 1000 observations, and finally compute
main statistics of the forecast error, measured by differences
between the asymptotic VaR (computed with the true simulated
DGP on 360,000 observations) and empirical ones recovered from
limited samples.



Table 1
Conditional simulated errors associated with the 95%, 99% and 99.5% VaR: GARCH (1,1) versus MS(2)-GARCH (1,1)-t.

Probability (%) Mean estimated VaR (%) Perfect VaR (%) Mean bias (%) Median bias (%) Min. bias (%) Max. bias (%)

Pair
Panel A. GARCH (1,1) DGP and GARCH (1,1) VaR with estimation error
a = 95.00 �36.16 �36.16 .00 .02 �19.53 19.60
a = 99.00 �59.70 �59.70 .00 .04 �32.66 32.02
a = 99.50 �70.99 �70.99 .00 .06 �38.35 38.03

Panel B. MS(2)-GARCH (1,1)-t DGP and GARCH (1,1) VaR with specification error
a = 95.00 �30.78 �36.16 �5.38 �5.38 �5.38 �5.38
a = 99.00 �43.83 �59.70 �15.87 �15.87 �15.87 �15.87
a = 99.50 �48.61 �70.99 �22.38 �22.38 �22.38 �22.38

Panel C. MS(2)-GARCH (1,1)-t DGP and GARCH (1,1) VaR with specification and estimation errors
a = 95.00 �28.97 �36.16 �7.19 �8.83 �21.70 18.99
a = 99.00 �41.28 �59.70 �18.42 �20.76 �38.88 18.02
a = 99.50 �45.78 �70.99 �25.20 �27.79 �47.84 15.03

Daily DJIA index from the 1st January, 1900 to the 20th September, 2011. These statistics were computed with the results of 360,000 simulated series of 1,000 daily returns
according to a specific DGP (rescaled GARCH (1,1) for Panel A and MS(2)-GARCH (1,1)-t for Panels B and C) using an annualized Normal GARCH VaR (in all Panels). The
columns represent, respectively, the average adjusted VaR according to specification and/or estimation errors, the theoretical VaR, the average, the minimum and the
maximum value of the adjustment terms. A negative adjustment term indicates that the estimated VaR (negative return) should be more conservative (more negative). Panel
A presents GARCH (1,1) DGP and/or estimated GARCH VaR; Panel B relates to a MS(2)-GARCH (1,1) DGP with estimated GARCH VaR; Panel C refers to an estimated MS(2)-
GARCH (1,1) DGP with results from an estimated GARCH VaR.
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2.2.2. Misspecification and a parameter estimation uncertainty
Our focus is on the annualized daily 95%, 99% and 99.5% VaR.

Table 1 illustrates the model risk of VaR estimates, defined as the
implication of model misspecification and a parameter estimation
uncertainty. We examine this model risk by comparing simulations
and estimates corresponding to a normal GARCH(1,1) and a MS(2)-
GARCH(1,1)-t. The columns represent respectively the average
adjusted VaR according to specification and/or estimation errors,
the theoretic VaR, the average, the minimum and maximum values
of the adjustment terms. Note that a negative adjustment term
indicates that the estimated VaR (which is a negative return)
should be more conservative (more negative).

We present the estimation bias ðbiasðh0; ĥ;aÞÞ, in Panel A of
Table 1, when we simulate a simple model (Normal GARCH(1,1))
and use the appropriate methodology for computing the VaR (Nor-
mal GARCH VaR). This bias arises only due to the small estimation
sample size (1000) and is zero for the full 360,000 sized sample.
However, the dispersion of this estimation bias is quite large since
the minimum and the maximum values of the bias (or adjustment
term) represent about 50% of the true VaR. For example, with
a ¼ 99%, the minimum and maximum biases are respectively
equal to �33% and +32% for a true VaR of �60%.

The specification bias (biasðh0; h1;aÞ) is presented in Panel B of
Table 1, where the quantiles were modelled by a GARCH(1,1)
VaR. Within this specific illustration, the risk model is fully
explained by the discrepancy between the DGP and the assumed
simple risk model used (since the parameters are here known
and the estimation bias is zero by definition); the specification bias
is thus constant and depends upon the choice of the risk model
specification. The average specification bias is large here; it is
negative and increases in absolute terms with a, which indicates
that extreme risks of the MS(2)-GARCH(1,1)-t DGP are generally
underestimated by the GARCH(1,1) parametric VaR model.

The estimation and specification biases are captured simulta-
neously in Panel C. These components of model risk are jointly
considered and, in the worst cases, they merely add up in an inde-
pendent manner. We compute the global error—denoted
biasðh0; h1; ĥ1;aÞ in its most general formulation—as the difference
between the true VaR and the estimated VaR according to a mis-
specified VaR model estimated on a limited sample. As in Panel
B, where a normal GARCH(1,1) VaR is used with a simulated
MS(2)-GARCH(1,1)-t, the average bias is negative and increases in
absolute terms with a. The mean errors are thus equivalent to
the specification bias component, but the dispersion of the model
risk realizations is inflated by the estimation bias.
2.2.3. Probability shifting
We illustrate the impact of probability shifting and model risk

in Table 2, which shows the two modified probability levels ~a�

and ~a��. The former is associated to the true density and corre-
sponds to the (mis-) estimated ð1� aÞ-VaR, whilst the latter, asso-
ciated to the estimated VaR, corresponds to the ð1� aÞ-VaR
without model error.

The gap between ~a� and a can be interpreted as a measure of
the model risk of the risk model. The gap between ~a�� and a can
also be analyzed as the probability shift that we should apply using
a specific model of VaR to reach the true VaR.

This alternative representation of the model risk of risk models
shows that ~a�� is often unreachable and cannot be used for correct-
ing the estimated VaR. For instance, the maximum associated with
the 99.5% VaR in Panel C has to be superior to 100%, which cannot
in practice be discriminated from the maximum, i.e. when associ-
ated with the 100% probability. More generally, ~a�� is frequently
superior to a, (and ~a� generally inferior to a) which can be inter-
preted as an under-estimation of the risk using the proposed
model of VaR (the estimated VaR is too aggressive).

This suggests that the recent call of some authorities for more
extreme quantiles (see, e.g. FSA, 2006), i.e. VaR 99.5% or 99.9%, is
not warranted since in some cases the real VaR appears below
the worst estimated return.

Finally, our results show, surprisingly, that the mean bias is not
a simple increasing function of the VaR and, accordingly, of the
level of probability associated to the VaR. The expected adjustment
associated to the 99.5% (99%) probability level is, for instance, four
(two) times larger than the expected adjustment associated to the
95% probability level and represents an increase of nearly 15%
(10%). The relation between the model risk and the probability
associated to the VaR is not linear and depends on several
components.

The implemented estimated VaR should be corrected by an
adjustment corresponding to the global bias linked to the potential
model risk error. However, the true perfect VaR is generally
unknown by definition. The proposed adjustments are thus impos-
sible to quantify accurately outside a pure academic simulation
exercise.



Table 2
Probability shifts associated with 95%, 99% and 99.5% annualized VaR: GARCH (1,1) versus MS(2)-GARCH (1,1) quantiles.

Estimated VaR Probability ~a� associated to the true density corresponding to the (mis-
)estimated VaR

Probability ~a�� associated to the biased empirical density corresponding to
the perfect VaR

Mean shift Median shift Min shift Max shift Mean shift Median shift Min shift Max shift

Panel A. GARCH (1,1) DGP and GARCH (1,1) VaR with estimation error
a = 95.00 94.19 94.24 90.37 99.31 94.51 94.26 94.36 99.88
a = 99.00 98.92 98.95 96.83 99.92 99.05 99.08 98.49 99.99
a = 99.50 99.25 99.38 98.71 99.97 99.47 99.09 99.98 N.R.

Panel B. MS(2)-GARCH (1,1)-t DGP and GARCH (1,1) VaR with specification error
a = 95.00 95.81 95.81 95.81 95.81 97.29 97.29 97.29 97.29
a = 99.00 98.64 98.64 98.64 98.64 99.92 99.92 99.92 99.92
a = 99.50 99.07 99.07 99.07 99.07 99.99 99.99 99.99 99.99

Panel C. MS(2)-GARCH (1,1)-t DGP and GARCH (1,1) VaR with specification and estimation errors
a = 95.00 94.15 94.29 82.43 99.44 97.44 98.47 85.69 N.R.
a = 99.00 97.71 97.94 89.81 99.88 99.78 99.98 96.27 N.R.
a = 99.50 98.35 98.56 91.71 99.92 99.93 N.R. 98.32 N.R.

Daily DJIA index from the 1st January, 1900 to the 20th September, 2011. These statistics were computed with the results of 360,000 simulated series of 1000 daily returns
according to a specific DGP (rescaled GARCH (1,1) for Panel A and MS(2)-GARCH (1,1)-t for Panels B and C) using an annualized Normal GARCH VaR (in all Panels). The
columns represent, respectively, the average Estimated VaR according to specification and/or estimation errors, the mean, the minimum and the maximum of the modified
probability level ~a� , the mean, the minimum and the maximum of the modified probability level ~a�� . The letters N.R. stand for ‘‘Not Reached’’, i.e. condition on bounds is not
met even for 100.00%. Panel A presents GARCH (1,1) DGP and/or estimated GARCH VaR; Panel B relates to a MS(2)-GARCH (1,1) DGP with estimated GARCH VaR; Panel C
refers to an estimated MS(2)-GARCH (1,1) DGP with results from an estimated GARCH VaR.

8 Note that the Basel ‘‘traffic light’’ backtesting framework is directly inspired by
this unconditional coverage test. However, Escanciano and Olmo (2009), Escanciano
and Olmo, 2010, Escanciano and Olmo, 2011 and Escanciano and Pei (2012) note tha
the Eq. (9) is ‘‘asymptotically correct’’ only if the in-sample size is infinitely large
relative to the out-of-sample one. To deal with this issue, we present later on in this
article (in Table 3), the results of our risk model correction method based on the
bootstrapped version of several tests as proposed by Escanciano and Olmo (2009
2010, 2011).
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3. An economic valuation of model risk

While the illustration above is focused on the controlled exper-
iment where the modeller knows the true model, in reality the true
model is not known. To address this, we propose a practical
method for dealing with model uncertainty, that makes use of past
historical errors related to specific estimated models. While it is
not possible to optimally adjust for biases, we can approximate
them by adjusting the VaR forecasts by the model’s historical per-
formance. More concretely, historical errors are used to adjust
future forecasts by identifying the minimum correction factor
needed to pass backtest criteria.

Recall the general Eq. (1) that defines the theoretical VaR as the
estimated VaR plus an error term. We can rewrite this general for-
mulation in another setting where we cannot be sure of the future
DGP (in an uncertain context). Hence, we define the imperfect
model adjusted VaR (IMAVaR) as (with previous notations):

IMAVaRðĥ1;aÞ ¼ EVaRðĥ1;aÞ þ adjðh0; h1; ĥ1;aÞ; ð7Þ

where EVaRð�Þ is an estimated VaR at the level a with a specific risk
model, ĥ1 are model parameters estimated with T observations, and
adjð�Þ the minimum VaR adjustment for the risk model, so that:

IMAVaRðĥ1;aÞ ¼ sup|{z}
VaR2R

fVaRðaÞ�g; ð8Þ

where the symbol R refers to the real numbers set, VaRð�Þ� is a set of
corrected VaR built from a model, and IMAVaRð�Þ is the highest limit
VaR (the less conservative VaR) that can be validated by the super-
visor (and all other more aggressive VaR rejected).

The IMAVaRð�Þ is thus the lowest acceptable VaR where the
term ‘‘acceptable’’ means that this VaR has the main good expected
qualities such as, for instance, a right hit frequency (and/or a fair
dependence, and/or a reasonable magnitude) of hits. Imagine two
polar cases. The VaR is �100.00% (the asset price is then equal to
zero); in this case, there is no hit and then no bad properties of hits,
but the estimated VaR is too conservative. If the VaR is +100.00%
(in this case, the VaR is too aggressive), we have numerous hits
with very bad properties. The IMAVaRð�Þ corresponds to a ‘‘model
risk robust’’ VaR that serves to calculate the correction we apply
to the Estimated VaR. Hence, the IMAVaRð�Þ is the highest VaR
(the less conservative VaR) that can be both validated by the
regulator (regarding the properties of its hits) and accepted by
the asset manager based on a consensual criterion.

3.1. General backtest procedures

A variety of tests have been proposed in the literature to gauge
the accuracy of VaR estimates (see Pérignon and Smith, 2010). In
our view, there are three desirable properties that should be met
by a risk model: the expected frequency of violations, the absence
of violation clustering and the consistency of exception magni-
tudes to the underlying statistical model in the parametetric case.

3.1.1. Frequency
The unconditional coverage test (Kupiec, 1995) is based on

comparing the observed number of violations to the expected.
The hit variable, obtained from the ex post observation of
EVaRð�Þ violations for threshold a and time t, denoted IEVaR

t ðaÞ, is
defined as:

IEVaRð�Þ
t ðaÞ ¼ 1 if rt < �EVaRðĥ;aÞt�1

0 otherwise;

(
where rt is the return at time t, with t ¼ ½1;2; . . . ; T�.

If we assume that IEVaR
t ð�Þ is iid, then, under the unconditional

coverage hypothesis (Kupiec, 1995), the total number of VaR

exceptions, denoted HitEVaR
t ðaÞ, follows a binomial distribution

(Christoffersen, 1998), denoted BðT;aÞ:

HitEVaRð�Þ
t ðaÞ ¼

XT

t¼1

IEVaRð�Þ
t ðaÞ � BðT;aÞ: ð9Þ

Under the null hypothesis, the likelihood ratio, LRuc, has the asymp-
totic distribution8:

LRucIVaRð�Þ
t ðaÞ ¼ 2 log baTI 1� baT�TI

� �� �
� log aTI 1� aT�TI

� �� �� �
!d v2ð1Þ;
ð10Þ
t
,

,



9 Theoretically, two interesting and limited situations may happen: an empty set of
T ðaÞ (no correction can fit the output to the test) and an AT ðaÞ which is null (no
rrection needed. In the empty case, no correction is acceptable for fulfilling the test
ndition (the model is just so bad that it cannot be corrected). This could arise from a

tuation in which a numerical solution cannot be reached (because the grid-search is
o large) or, more importantly, from a more annoying situation corresponding to a
ilure of the VaR model under study. For instance, let us imagine a theoretical
tuation in which the series of hits are exactly equal (all exceptions are of equal size):
en there is no correction that leads to being in accordance with the confidence level
ither the correction leaves the hits unchanged in terms of frequency – if not severe,

r makes all hits disappear – if too strict). However, in our estimation (see Fig. 4), a
se of an empty set of AT ðaÞ never happened, and a nil correction (with a two digit

ccuracy) occurred only in fewer than 5% or so of the cases in the sample of 27,842
bservations (whatever the method of VaR computation).
0 We used a looped grid-search algorithm, adding successively a small increment

n the top of the VaR (+.1% of the EVaR at each step of the loop), starting from the
aximum positive value and increasing until the test is finally passed at a given

robability threshold.
1 A generalization of the basic procedure leads to simple time-varying corrections,

here the original sequence is modified as VaRt1 ðĥ1;aÞ þ q1 : t1 ¼ ½1; . . . ; T1�;
n

. ;VaRtk ðĥk;aÞ þ qk : tk ¼ ½k; . . . ; T1 þ k� 1�; . . .g and the optimization is done in all
e arguments ðq1; . . . ; qk; . . .Þ, with the optimal adjustment at the end being the
aximum of the sequence ðq1; . . . ; qk; . . .Þ.
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where the symbol!d denotes the convergence in distribution of the

test statistic, TI ¼ T � E IEVaRð�Þ
t

h i
is the number of exceptions andba ¼ TI=T is the unconditional coverage.

3.1.2. Independence
Christoffersen (1998) proposed a test for the independence of

violations:

LRindIEVaR
t ðaÞ ¼ 2 log LIEVaR

t ðaÞðp01;p11Þ � log LIEVaR
t ðaÞðp;pÞ

h i
!d v2ð1Þ;

ð11Þ

where pij ¼ Pr IEVaR
t ðaÞ ¼ jjIEVaR

t�1 ¼ i
h i

is a Markov chain that reflects
the existence of an order 1 memory in the process IEVaR

t ðaÞ,
LIEVaR

t ðaÞðp01;p11Þ ¼ ð1� p01ÞT00pT10
01 ð1� p11ÞT10pT11

11 is thus the likeli-
hood under the hypothesis of the first-order Markov dependence,
LIEVaR

t ðaÞðp;pÞ is the likelihood under the hypothesis of independence,
such as p01 ¼ p11 ¼ p, with Tij the number of observations in the
state j for the current period and at state i for the previous period,
p01 ¼ T01=ðT00 þ T01Þ;p11 ¼ T11=ðT10 þ T11Þ and p ¼ ðT01 þ T11Þ=T .

3.1.3. Magnitude
A third class of tests focuses on the magnitude of the losses

experienced when VaR limits are violated. While this is not
relevant for methods such as historical simulation, it provides a
useful evaluation of the parametric approaches. Berkowitz
(2001), for instance, proposes a hypothesis test for determining
whether the magnitudes of observed VaR exceptions are consistent
with the underlying VaR model, such as:

LRmagctþ1 ¼ 2 Lctþ1
magðl;rÞ � Lctþ1

magð0;1Þ
h i

!d v2ð2Þ; ð12Þ

where ctþ1 is the magnitude variable of the observed VaR excep-
tions, l and r are unconditional mean and standard deviation of
ctþ1 series, and where

Lctþ1
magðl;rÞ¼

X
fctþ1¼0g

log 1�U
U�1ðaÞ�l

r

( )( )

þ
X

fctþ1–0g
�1

2
logð2pr2Þ�ðctþ1�lÞ2

2r2
� log U

U�1ðaÞ�l
r

( )( )( )
:

For both unconditional and conditional coverage tests,
Escanciano and Olmo (2009, 2010, 2011) alternatively approxi-
mate the critical values of these tests by using a sub-sampling
bootstrap methodology, since they show that the coverage VaR
backtest is affected by model misspecification. Note that, interest-
ingly, the bootstrapped versions of the tests always lead to lower
VaR corrections, i.e. a dynamically corrected VaR which is less
conservative.

3.2. A desirable VaR and the backtests

Under the H0 hypothesis, a desirable VaR passes each of these
three test criteria:

LRucIVaRð�Þ
t ðaÞ !d v2ð1Þ for the hit test;

LRindIVaRð�ÞðaÞ
t !d v2ð1Þ for the independence test;

LRmagctþ1ðaÞ
t !d v2ð2Þ for the exception magnitude test:

8>>><>>>: ð13Þ

We now have to search for the minimal adjustment value q�

that allows us to pass all the tests (one-by-one, or jointly). For a
given VaR forecast and the bounding range for the tests above,
we can obtain the IMAVaR that respects conditions (10), (11)
and/or (12) (or their sub-sampled versions). More precisely, given
a sequence of predictions fVaRtðĥ;aÞ : t ¼ ½1; . . . ; T�g, we construct
the set of values q 2 R such that the sequence
fVaRtðĥ;aÞ þ q : t ¼ ½1; . . . ; T�g passes several backtests. If we
denote the set of accepted adjustments by ATðaÞ, the optimal
adjustment is given by9:

q�T ¼ arg min|ffl{zffl}
q2AT ðaÞ

fqg: ð14Þ

We use a numerical optimization technique to solve the
program (14 ): During the adjustment process, we search for the
optimal adjustment, starting with a large negative value of q�,
increasing it slowly, until the adjusted VaR allows us to pass all
the tests.10

The program (14) gives the optimal value of adjustment of the
imperfect VaR estimation to become a desirable VaR. This means
that the H0 hypothesis is true for the selected backtest method,
so that the test statistic is lower than critical values for all tests
at the threshold a. In what follows, in order to distinguish the
effect of each test, we provide each correction separately, corre-
sponding to each of the tests taken alone.11

As a first illustration, Fig. 3 provides the minimum adjustments
(errors), denoted q� as solutions to the program (14). We first only
consider the hit test, for the historical, the Gaussian and the GARCH
VaRs computed on the DJIA over one century of daily data. The
figure represents the minimal adjustment (in a percentage of the
underlying VaR) necessary to respect the hit ratio criteria accord-
ing to the VaR level of confidence (95–99.5%). This minimal adjust-
ment is here considered as a proxy for the economic value of the
model risk; it is expressed as a proportion of the observed average
VaR.

In other words, we show the minimal constant that should be
added to the quantile estimation for reaching a VaR sequence that
passes the hit test at all times (here with full information at time
T). We can see that the corrections range from (almost) 0% to
140% and increase with the quantile. The comparison between
the three methods favors the GARCH method, since the error is
lower for all quantiles and the difference between methods (with
full information about the total sample) is quite similar and rather
independent of the confidence level.
3.3. VaR model comparisons

We apply the general adjustment method presented above,
obtained for the daily DJIA index from January 1st, 1900 until
March 2nd, 2011 (29,002 daily returns). We use a moving window
of four years (1040 daily returns) to re-estimate parameters
dynamically for the various methods. Forecasted VaR are
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Fig. 3. Minimum model risk adjustment factor for the hit test associated with historical, Gaussian and GARCH VaRs on the DJIA, for a range of probabilities. Daily DJIA index
from the 1st January, 1900 to the 20th September, 2011. This figure represents on the y-axis the minimal adjustment (in a percentage of the underlying VaR) necessary to
respect the hit ratio criterion according to the VaR level of confidence (x-axis). This minimal adjustment is here considered as a proxy of the economic value of the model risk;
it is expressed as a proportion of the observed average VaR. The historical VaR is here computed on a weekly horizon as an empirical quantile using 5 years of past returns. The
Gaussian and the GARCH VaRs are here computed on a weekly horizon as a parametric quantile using 5 years of past returns to estimate the parameters.
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computed dynamically for each method for the final 29,957 days
(about 108 years). The out-of-sample exercise consists in a rolling
forecast scheme with a window of four years (1040 daily returns)
to re-estimate parameters dynamically. Then, we use one year of
out-of-sample daily forecasts to calibrate the correction based on
the backtesting procedures. The backtesting experiment to correct
the risk model of VaR estimates is then based on a ratio of the out-
of-sample to in-sample size equal to.24, i.e. 250/1040), which is
sufficiently close to zero, as required for a valid out-of-sample
exercise as shown by West (1996), McCracken (2000), Escanciano
and Olmo (2010), Escanciano and Pei (2012). This comparison con-
siders daily estimation of the 95%, 99% and 99.5% conditional VaR.

This leaves the choice of the VaR forecast method. While there
is a large number of techniques that could be used, we restrict our-
selves to the most common in practice, in particular historical sim-
ulation and several parametric approaches based on Gaussian or
Student-t return distributions, as well as the Cornish–Fisher VaR;
see Cornish and Fisher, 1937; Favre and Galeano, 2002). We also
employ three dynamic methods, EWMA, GARCH(1,1) and CAViaR
(Engle and Manganelli, 2004). Finally, we complement these meth-
ods by using two extreme densities for the returns, such as the GEV
distribution and the GPD (see e.g. Engle and Manganelli, 2001).

Fig. 4 shows the optimal adjustment factor for the various risk
models for a 95% VaR estimated with the DJIA, in particular the
daily correction factors that pass the hit test over the past year
of daily returns (over the period from t � 250 to t). The magnitude
can sometimes be large (specifically around the 1929 and 2008 cri-
ses), ranging from 0 to 15% EWMA or to more than 100% in some
circumstances (for the Cornish–Fisher VaR). We also see that the
most extreme VaR violations happened during the Great Depres-
sion for all measures. Dynamic measures, such as EWMA, GARCH
and CAViaR, also demonstrate some superiority over unconditional
parametric methodologies.

Fig. 5 illustrates the evolution of the maximum required correc-
tions for all VaR methods under consideration (maxima of the his-
torical correction record needed from January 1st, 1900 to the
current date t, which were already represented in Fig. 4).12 These
corrections are for the hit test, from the general program aiming to
correct today’s VaR with the historical maximum of the minimum
correction that has been necessary since the beginning of the series
(expressed here in relative terms compared to the level of VaR).

Fig. 6 illustrates the minimum dynamic adjustment required for
12 We did the same estimation and backtesting with a 10-year sample for VaR. We
obtained the same qualitative results and saw that the choice of the size for VaR
estimation is not crucial in our case. The results are available on demand.
passing the hit test for a randomly chosen first date of implemen-
tation. More precisely, the exercise consists of choosing a first date
and then computing the dynamic adjustment until the end of the
sample; repeating this exercise 30,000 times, whilst ultimately
keeping, for each horizon, the minimum correction obtained. The
optimal adjustments are here expressed in terms of a percentage
of their maximum value over the whole sample. For each horizon
(x-axis in Fig. 6), the correction (on the y-axis) thus corresponds
to the worst case scenario, i.e. the smallest correction required in
the various samples of the same horizon).

The figure shows that, depending on the VaR method, the time
period length for having almost all of the maximum correction fac-
tors varies from 18 years (GEV) to 46 years (CAViaR). Moreover,
regardless of the model, the major part (80% or so) of the correction
factors is reached after 10 years. This means that, whatever the VaR
model, most of the greatest surprises have been faced after a dec-
ade of history (even in the worst scenario when the sample is
amongst the least turbulent ones). In other words, at least ten
years are needed to have a fairly good idea of the magnitude of
the required correction factors.

We next consider the three main qualities of VaR models as a
generalization of the approach by Kerkhof et al. (2010). Table 3
reports the various minimum required corrections related to the
three main categories of tests, together with their Escanciano and
Olmo (2009, 2010, 2011) bootstrapped corrected versions. We first
note that the hit test is less permissive when the bootstrapped crit-
ical values are used, whilst the tests of independence and magni-
tude impose very severe corrections (to the order of 100% in
relative terms for some tests).

According to the the unconditional coverage test at a 5% level,
EWMA is the best model for estimating the DJIA index 95% VaR, fol-
lowed by GARCH and then GEV. The independence test favors the
conditional methods, with the best result for the GARCH model.
Finally, when considering the magnitude of the violations—the
most severe test—once again the dynamic measures show some
superiority, whilst the extreme density VaR exhibits weakness.
3.4. Generalized model risk of model risk

Finally, we compare our method with classical stress-test exer-
cises. We first present the extent to which the required calibrated
correction factors can provide an insurance against major historical
financial crises. Then, we compare the correction factors implied
by the various backtests to correct the model risk of risk models,
to a typical stress-test scenario.
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Fig. 4. Dynamic optimal adjustment on the daily 95% VaR. Daily DJIA index from the 1st January, 1900 to the 20th September, 2011. We use a moving window of four years
(1040 daily returns) to re-estimate parameters dynamically for the various methods.
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Fig. 5. Optimal dynamic absolute value of minimum negative adjustments for the hit test for different methods and the 95% VaR. Daily DJIA index from the 1st January, 1900
to the 20th September, 2011. We use a moving window of four years (1040 daily returns) to re-estimate parameters dynamically for the various methods.
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Three implicit levels of confidence are required: the probability
level of the VaR under consideration, the thresholds in the various
tests applied for computing the required correction and, finally, the
degree of confidence we want to put on the solidity of the buffer.
Typically, a high probability VaR focus will increase the model risk,
whilst a more severe test level leads to a lower risk. Consequently,
a high incremental buffer leads to a high protection against the
model risk that is realized during extreme events in the market.
By contrast, a reduced buffer decreases the insurance against these
major turbulent episodes and, then, ultimately increases failures of
(corrected) risk models.

Fig. 7 below illustrates this link between the level of the buffer,
here translated into protection against the more severe historical
crises, and the degree of confidence associated to the buffer. The
Figure represents the cumulative density functions of required
adjustments (in the last century of the DJIA) for, respectively, the
historical and GARCH(1,1) VaR at a 95% confidence level, with a
threshold for the hit test fixed at 5%. The series of dates stand for
years corresponding to the largest exceptions for the two VaR
methods for certain levels of confidence (on the y-axis) and related
corrections (on the x-axis). We note here that the GARCH VaR leads
to smaller corrections in general. We also see that if we accept a 5%
model risk, we are, unsurprisingly, not protected anymore against
the 5% biggest shocks in the data (such as, for instance, those of
1929, 1930, 2008 and 2009 for the historical method).

We then compare the correction applied to assess the robust-
ness of risk estimates with the correction implied by a typical
stress test exercise for usual portfolio profiles by imposing hand-
picked shocks for each investment class. We provide these compar-
isons in terms of factor k used by regulators for determining capital
(k being between 3 and 5).

Thus, we first present in Table 4 (Panel A and B) the various
(model risk free) minimum corrections corresponding to the three
tests (frequency, independence and magnitude) at a 5% confidence
level for a 95% GARCH VaR applied to financial series of daily return
on indexes and profiled portfolios in the period from December
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Fig. 6. Optimal dynamic relative adjustment for the hit test for different starting dates and 95% VaR by horizon (in years). Daily DJIA index from the 1st January, 1900 to the
20th September, 2011. We use a moving window of four years (1040 daily returns) to dynamically re-estimate parameters for the various methods. This figure illustrates the
dynamic negative adjustment required for passing the hit test (see Fig. 4), having randomly chosen the first date of implementation. Optimal relative negative adjustments
are here expressed in terms of percentage of their maximum value over the whole sample.

Table 3
Minimum model risk for 95% daily VaR models for various validity tests with a 5%
confidence level.

Method Mean VaR
(%)

q1 (%) q�1 (%) q2 (%) q�2 (%) q3 (%) q�3 (%)

Historical �1.60 �2.61 �2.03 �4.85 �3.24 �3.10 �5.90
Normal �1.68 �2.66 �1.86 �4.62 �2.76 �2.76 �5.49
Student �1.89 �2.49 �1.86 �4.25 �2.85 �3.11 �6.30
CF �1.26 �8.29 �7.48 �8.40 �8.86 �8.40 �8.86
EWMA �1.59 �.98 �.65 �2.03 �1.02 �1.02 �2.89
GARCH �1.61 �1.13 �.96 �2.57 �1.15 �1.20 �2.46
CAViaR �1.66 �1.87 �1.55 �2.59 �2.22 �2.08 �2.56
GEV �1.84 �2.42 �1.99 �4.47 �2.99 �2.80 �6.97
GPD �2.11 �2.35 �1.67 �4.43 �2.63 �2.71 �6.51

Daily DJIA index from the 1st January, 1900 to the 20th September, 2011. We use a
moving window of four years (1040 daily returns) to dynamically re-estimate
parameters for the various methods. The variable q1 refers to the hit test; q2 to the
independence test; q3 to the magnitude test; and q�1; q�2, q�3 correspond to their
resampling versions, following Escanciano and Olmo (2009, 2010, 2011).
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31st, 1986 to November 28th, 2011. We consider four asset classes
as well as three investment profiles combining these asset classes
(defensive, balanced and aggressive portfolios).13

We express the outcomes as a percentage of VaR in Table 4
(Panel A), whilst presenting them as k ratios of corrected VaR out
of estimated VaR in Panel B of Table 4. The correction factors in
Panel A of Table 4 for single indexes range from �3.65% (for q3—
magnitude correction for the commodity index) to �63.83% (for
q�3—bootstrapped magnitude correction for the real estate index).
For the various profiles, we see that the correction factor is lower
than 1% for the defensive profile and goes to 10% or so for the
aggressive one (and to �35.05% when considering the most severe
test of magnitude). When these correction factors are expressed in
terms of k ratios in Panel B of Table 4, they range from 1.01 to 3.66
which is in line with the official k ratio between 3 and 5.

We can now compare the correction factors, calibrated based on
our framework, with a standard stress–test approach supposing
some typical shocks on various asset classes. As underlined by
Breuer and Csiszár (2014), stress tests with hand-picked scenarios
are subject to two significant criticisms. First, arbitrary severe sce-
narios may be too implausible. Second, some other stress scenarios
leave open the question of whether there are more severe scenar-
ios of similar plausibility. If the considered scenarios are harmless,
either because stress testers lack proficiency or wish to hide risks,
stress tests convey a feeling of safety which might be false. If they
are merely unrealistic, they lead falsely to excessively high capital.
Our proposed strategy can help to gauge the severity (and plausi-
bility) of an ad hoc handpicked specific scenario.

Focusing indeed on the k ratios, Panel C of Table 4 reports the
implied corrections on annual 95% GARCH VaR in the case of a
hypothetical stress. With the given intensity of shocks considered
here14 (�30% for the equity index, �40% for the real estate, �30%
for commodity and �20% for bonds over a one-year horizon), k ratios
13 For the bonds, we use the ‘‘Merrill Lynch U.S. Treasuries/Agencies-Master AAA’
index before 01/01/1998 and the ‘‘J.P. Morgan EMU Global Aggregate Bond AAA Al
Maturities’’ after; for the equity class we use a composite index ‘‘95% MSCI Europe
Index +5% MSCI World Index’’; for the real estate class we get the ‘‘European Rea
Estate Investment and Services Index’’ and for commodity, the ‘‘CRB Spot Index’’.

14 The amplitude of the shocks is directly inspired from recommendations of the
Committee of European Insurance and Occupational Pensions Supervisors (CEIOPS).
’
l

l

vary from 1.90 (for q2 – independence correction for the equity
index) to 4.99 (for q3—magnitude test for the real estate index) for
the single indexes, and from 1.54 (for q2 – independence correction
for the balanced profile) to 6.10 (for q3—magnitude test for the
aggressive portfolio).

If we now compare the results in Panel C of Table 4 (ad hoc
stress tests) to those in Panel B of Table 4 (calibrated empirical
corrections), the arbitrary implied corrections of the stress test
scenarios appear to be far more severe for almost all indexes and
portfolios (except for the balanced one and the independence test).
We thus conclude that this illustrative stress-test is very conserva-
tive. In other words, because k ratios are almost higher in Panel C of
Table 4 than in Panel B of Table 4 (on average by 80%), this stress-
test seems to be relatively robust to the impact of model risk for
the risky assets.

Taken altogether, our results suggest that some VaR models are
preferred (e.g. the dynamic approaches such as the EWMA, CAViaR
and GARCH models), whilst others should be avoided (e.g. the
Cornish–Fisher VaR or extreme distribution based VaR) when com-
paring the minimum correction to pass the frequency/hit test.
Moreover, the independence and the magnitude tests lead to more
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Fig. 7. The empirical cumulative density function of optimal adjustment values for the hit test of a 95% daily historical and GARCH VaR. Daily DJIA index from the 1st January,
1900 to the 20th September, 2011. We use a moving window of four years (1040 daily returns) for computing the VaR. The threshold for the hit test is here fixed at 5% and we
use a Gaussian kernel smoothing density (see Bowman and Azzalini, 1997).

Table 4
Minimum model risk for a 95 GARCH-VaR, k ratio model risk confidence levels for a 95 GARCH-VaR and 95% stress-VaR for 5% validity tests on various portfolios.

Portfolio q1 q�1 q2 q�2 q3 q�3

Panel A. Minimum annualized model risk for a 95% GARCH-VaR
Equity �10.15% �7.14% �9.86% �15.12% �44.80% �16.44%
Real estate �12.65% �10.32% �16.53% �18.93% �63.83% �25.03%
Commodity �6.39% �6.25% �5.29% �6.99% �13.76% �3.65%
Bond �9.89% �9.62% �10.27% �10.54% �18.44% �13.62%

Defensive profile �.08% �.08% .00% �.21% �1.04% �.26%
Balanced profile �4.63% �4.36% �5.88% �6.52% �15.79% �8.74%
Aggressive profile �9.28% �8.38% �8.52% �11.62% �35.05% �12.72%

Panel B. Minimum k ratio model risk confidence levels for a 95% GARCH-VaR
Equity 1.35 1.25 1.34 1.53 2.56 1.57
Real estate 1.40 1.33 1.53 1.60 3.03 1.80
Commodity 1.65 1.64 1.54 1.72 2.41 1.37
Bond 2.43 2.39 2.48 2.52 3.66 2.97

Defensive profile 1.15 1.15 1.01 1.40 3.00 1.50
Balanced profile 1.45 1.42 1.57 1.63 2.52 1.84
Aggressive profile 1.42 1.38 1.38 1.52 2.58 1.57

Panel C. Minimum k ratio model risk confidence levels of 95% stress-VaR
Equity 2.54 2.25 1.90 2.71 4.81 3.29
Real estate 3.11 2.84 3.18 3.80 4.99 4.84
Commodity 2.89 2.89 3.27 2.92 3.83 3.19
Bond 3.51 3.50 3.52 3.56 4.04 3.76

Defensive profile 2.11 2.11 2.11 2.12 2.20 2.16
Balanced profile 2.63 2.50 1.54 2.63 5.10 3.81
Aggressive profile 3.08 2.94 1.83 3.78 6.10 4.94

Datasource: DataStream and Bloomberg. Daily data from the 31st December, 1986 to the 28th November, 2011; computations by the authors. The asset classes as detailed in
Footnote 13. A moving window of four years (1040 daily returns) is used to re-estimate parameters dynamically for the various methods. ‘‘Defensive Profile’’ corresponds to a
mixed portfolio compound with 10% bond + 90% Liquidity; ‘‘Balanced Profile’’ 30% equity + 10% Real Estate + 10% commodity + 40% bond + 10% liquidity; and ‘‘Aggressive
Profile’’ 70% equity + 15% real estate + 15% commodity. The variable q1 refers to the hit test; q2 to the independence test; q3 to the magnitude test; and q�1; q�2, q�3 correspond
to their resampling versions, following Escanciano and Olmo (2009, 2010, 2011). Panel A gives the minimum annualized corrections for backtest at 5% confidence level on a
95% GARCH-VaR, Panel B the minimum k-ratio (adjustment/VaR) for a 95% GARCH-VaR and Panel C the minimum k ratio model in the stress-VaR context for 5% validity tests.
The following shocks are considered for Panel C: �30% for the equity index, �40% for the real estate, �30% for commodity and �20% for bonds over a one-year horizon.
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severe corrections on the estimated VaR than the frequency test
does. But whatever the model, the magnitude of the correction
factors can be sometimes exceptionally large, especially during
major financial crisis episodes such as the Great Depression of
1929 or the crisis of 2008. This is why there is a direct link between
the confidence level on the required ex post correction (on the full
historical sample), and the insurance against these major historical
financial turmoils. However, we also show that a 10 year sample of
observations for calibrating the minimum correction to be added,
is sufficient to have a fairly good idea of the magnitude of the
model risk of risk models.

4. Conclusions

Standard risk measures failed to forecast extreme risks and reg-
ulators require that financial institutions quantify this model risk
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of risk models. We propose to adjust risk forecasts for model risk
by the historical performance of the model. In other words, the risk
model learns from its past mistakes.

We first examine standard risk models by assessing how well
they forecast risk from a simulated process, designed to realisti-
cally capture the salient features of financial returns. The experi-
ment shows that model risk is significant and ever present, in
some cases, so large that it exceeds the actual risk forecast.

In our main contribution, we then propose a methodology for
explicitly incorporating model risk corrections into risk forecasting
by taking into account the models’ performance on a range of stan-
dard back testing methodologies.

The general setup also enables us to evaluate the performance
of standard risk forecast models, by applying the basic principle
that the lower the model risk correction factor, the lower the
model risk and, therefore, the better the model. The results show
that dynamic methods, such as EWMA, CAViAR and GARCH VaR,
have an advantage over static approaches such as Gaussian and
extreme density approaches. Somewhat surprisingly, the very sim-
ple historical simulation approach is, if not the best method, close
to the best.

We conclude by proposing an approach that provides a tailored
methodology for risk managers where they can explicitly relate the
degrees of confidence in the correction factor to the distribution of
past violations. In this, the manager addresses three concerns: the
VaR probability, the severity of tests and the trust we want to put
into the correction buffer. This can, for example, enable a risk man-
ager to explicitly consider extreme events, such as 1929 and 2008,
or alternatively disregard their impact on risk forecasts.

The Basel Committee has recently proposed (BCBS, 2013) the
use of a stressed risk forecast as the main input into the current
risk forecast. Such an approach is an improvement over the exist-
ing methodology, and is partially consistent with our methodology.
The Committee indeed proposes to rescale the risk forecasts by the
ratio of the stressed and unstressed risk factors, such as the
adjusted current risk forecast becoming more conservative and
thus less prone to exceptions. However, our proposal deals with
this in a more precise way. First, we adjust risk forecasts by their
past errors, which mainly come from these distressed periods. Sec-
ond, we consider a confidence level about the required correction
factor, linked to the insurance against major financial stress
episodes. Finally, we define proper criteria for adjusting the risk
forecasts based on some properties of forecast errors such as their
frequency, their independence and their magnitude. In our view,
the Basel Committee proposal still ignores the model risk of risk
forecasts and consists of an adjustment of the current risk without
an explicit criterion.

Our work can be extended in several ways. Our general correc-
tion framework can be used when comparing the various tests of a
desirable VaR proposed in the literature (Berkowitz et al., 2011).
The second extension could be to apply some specific VaR models
when judging the riskiness of some non-linear products using, this
time, several pricing models. In the same vein, evaluating the
impact on asset allocation of integrating the model risk of risk
measures could be of interest, especially for asset allocation para-
digms depending on risk budgets, e.g. safety first criteria. The third
extension could be found in generalizing the comparison consider-
ing several time-horizons (e.g. Cheridito and Stadje, 2009;
Hoogerheide et al., 2011) or several quantile levels (Colletaz
et al., 2013). The fourth extension is about alternative backtests
when calibrating our model risk correction (see Appendix for a list
of tests), in particular when the VaR violations are clustered. For
this purpose, the recent D-test of Escanciano and Pei (2012), the
MCS-tests by Ziggel et al. (2013), the Geometric-VaR test by
Pelletier and Wei (2014), and the Multi-level VaR test by
Leccadito et al. (2014), because of their shown finite-sample size
and power properties, might be of interest as complementary
backtest criteria for strengthen the safety of the buffer for model
risk. Another approach would be to adopt the same methodology
leading to an estimated multi-VaR, built as a portfolio of various
VaR models (see Abdous and Remillard, 1995), directly aiming to
minimize the model risk (McAleer et al., 2013). Finally, using the
same metric of corrections, the quality of other VaR based mea-
sures in a context of systemic risk measures (such as Marginal
Expected Shortfall or CoVaR) would be worth considering (e.g.
Daníelsson et al., 2014; Benoit et al., 2013; Löffler and Raupach,
2013).
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Appendix A. Model risk when forecasting risk

Financial risk forecast models, just like any other statistical
model, are thus subject to model risk. In spite of this, almost all
presentations of risk forecasts focus on point estimates, omitting
any mention of model risk, not even mentioning estimation risk.
They are, however, subject to the same basic elements of model
risk as any other model, and are also subject to unique model risk
factors because of the specific application.

In order to formally identify the model risk factors, we propose
a five level classification scheme:

1. Parameter estimation error arises from uncertainty in the
parameter values of the chosen model.

2. Specification error refers to the model risk stemming from
inappropriate assumptions about the form of the data
generating process (DGP) for the random variable.

3. Granularity error is based on the impact of undiversified
idiosyncratic risk on the portfolio VaR.

4. Measurement error relates to the use of erroneous data
when measuring the risks and testing the models.

5. Liquidity risk is defined as the consequence of both infre-
quent quotes and the inability to conduct sometimes a
transaction at current market prices because of the too large
size of the transaction.

The ultimate objective is to forecast VaR, where we indicate the
estimate by ‘‘estimated VaR’’ (denoted EVaR). It is a function of the
portfolio size and the true model parameters h0. In what follows,
VaR is the ð1� aÞth quantile (with a > :50Þ of the profit and loss
distribution, so that the VaR is negative (and expressed hereafter
as a return for the sake of simplicity). We also indicate the theoret-
ical (or true) VaR by ThVaRðh0;aÞ. Thus, when comparing the esti-
mated VaR with the theoretical VaR (i.e. EVaR and ThVaR
respectively), we present both the buffer needed to directly adjust
the EVaR and the probability (or quantile) shift required. Our
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objective is to approximate the errors or ‘‘biases’’ of VaR estimates
since we do not know the ‘‘true’’ DGP with real data. Biases defined
hereafter are ‘‘errors’’ (that can be repeated) that come mainly
from the use of a wrong model and/or the wrong specification
regarding the ‘‘true’’ (assumed DGP). Our proposed procedure
consists of approximating these errors, based on the minimum cor-
rection needed not to reject a predefined consensual backtest. In
the following sub-sections, we detail these specific model risks
that impact VaR forecasts and provide some examples.

A.1. Estimation risk

Estimation risk occurs in every estimation process. Relatively
small changes in the estimation procedure or in the number of data
observations can change the magnitude and even the sign of some
important decision variables. Thus, estimation risk is the risk
associated with an inaccurate estimation of parameters, due to
the estimator quality and/or limited sample of data (past and/or
future), and/or noise in the data.

If PEAVaR denotes the perfect estimation adjusted VaR,
EVaRðĥ;aÞ the estimated VaR and biasðĥ; h0;aÞ the bias function,
where ĥ are the estimated parameters, we have:

PEAVaRðĥ; h0;aÞ ¼ EVaRðĥ;aÞ þ biasðĥ; h0;aÞ: ðA:1Þ

Example 1. As an illustration, assuming an ARCH model, the
estimation risk (denoted herein ERð�Þ) is expressed in Gouriéroux
and Zakoïan (2013), as (with the previous notations):

EVaRðĥ;aÞ ¼ ThVaRðh0;aÞ þ ERðThVaRðh0;aÞ; ĥ;aÞ;

with

ER½ThVaRðh0;aÞ; ĥ;a� ¼ �ð2TÞ�1h½ThVaRðh0;aÞ; ĥ;a� þ oðT�1Þ;

where T is the length of the estimation period, oðT�1Þ converges to a
term of order T�1 and:

h½ThVaRðh0;aÞ; ĥ;a� ¼
@2g�1
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;

and r ¼ g½rt�1; h; ThVaRðh0;aÞ�;XðhÞ the variance–covariance of
parameters in h; gð:Þ a continuous function, strictly increasing with
respect to the VaR parameter and g�1ð:Þ its inverse.
A.2. Specification risk

Specification error arises from using inappropriate assumptions
about the form of the DGP. We propose denoting the strong form of
specification risk as the risk from using a risk model which cannot
capture the true unknown DGP. The weak form of specification risk
then corresponds to the risk of using a risk model inadequate with
the assumed, and hence known, DGP.

Consider the special case of knowing the true model parame-
ters, but not knowing the model. In this case, we can define the
perfect specification adjusted VaR (PSAVaR) as:

PSAVaRðh0; h1;aÞ ¼ EVaRðh1;aÞ þ biasðh0; h1;aÞ; ðA:2Þ

where h1 are known parameters, defined so that we can link the
misspecified model to the true model, with some mapping
h0 ¼ f ðh1Þ.
Example 2. A simple measure of the specification risk (denoted as
SRð�Þ) associated to the expansion of the unknown ‘‘true’’ theoret-
ical model of VaR (denoted ThVaRðh;aÞ), can be written as:

EVaRðĥ;aÞ ¼ ThVaRðh;aÞ þ SR½ThVaRðh;aÞ; ĥ;a�;

with

SR½ThVaRðh;aÞ; ĥ;a� ¼r
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where ThVaRðh;aÞ is the ‘‘true’’ theoretical model of VaR, AVaRðĥ;aÞ
is the asymptotic a-quantile of the approximate model in use, SRð�Þ
is the specification error associated to this specific model and
parameters l, r; Sk and Ku stand, respectively, for the mean, the
standard deviation, the skewness and the kurtosis of the return
distribution.
A.3. Granularity error

Granularity error is caused by the bias resulting from a finite
number of assets in portfolios and then by the resulting residual
idiosyncratic risk, see e.g. Gordy (2003) and Wilde (2001). The
granularity principle yields a decomposition of such risk measures
that highlights the different effects of systematic and non-system-
atic risks.

More precisely, any portfolio risk measure can be decomposed
into the sum of an asymptotic risk measure corresponding to an
infinite portfolio size and 1=n times an adjustment term where n
is the portfolio size (number of assets). The asymptotic portfolio
risk measure, called the cross-sectional asymptotic risk measure,
captures the non-diversifiable effect of risks on the portfolio. The
adjustment term, called granularity adjustment, summarizes the
effect of the individual specific risks and their cross-effect with
systematic risks, when the portfolio size is large, but finite.

Suppose the theoretical VaR is based on an asymptotic factorial
model, valid asymptotically. In this case, we can apply a similar
adjustment factor to arrive at the perfect granularity adjusted
VaR (PGAVaR) so that:

PGAVaRðh0;a;nÞ ¼ EVaRðh0;a;NÞ þ biasðh0;a;nÞ; ðA:3Þ

where n is the number of assets in the portfolio under study and N a
large number of assets for which the asymptotic model is valid.

Example 3. As an illustration, and following here Gagliardini and
Gouriéroux (2013), in the special case of independent stochastic
drift and volatility, the granularity risk (denoted below GRð�Þ) that
impacts the estimated VaR can be expressed as (with the previous
notations):

EVaRðh;a;NÞ ¼ ThVaRðh;a;nÞ þ ðn�1ÞGRðaÞ þ oðn�1Þ;

with

GRðaÞ ¼ �ð2�1ÞEfr2½q�g � dlogf ðqÞ
dq

� �
;

where n is the number of assets in the portfolio under study, N a
large number of assets for which the asymptotic model is valid,



Table B.1
A road map of the main risk model validation tests.

C.M. Boucher et al. / Journal of Banking & Finance 44 (2014) 72–92 85
q ¼ EVaRðh0;a;NÞ is the quantile of a factor G and f ð�Þ is its density
function.
Exception frequency tests
Intuition: test the violation frequency that should be equal to the probability

threshold
An Unconditional Coverage Test – Kupiec (1995)
A GMM Duration Test – Candelon et al. (2011)
A Z-test – Jorion (2007)
A Multi-variate Unconditional Coverage Test – Pérignon and Smith (2008)
A D-test – Escanciano and Pei (2012)
A MCS Test – Ziggel et al. (2013)

Exception independence tests
Intuition: test the violations associated to the VaR forecasting that should be

independent
(not clustered and/or no forecasting power via a time-series model for extremes)
An Independence Test – Christoffersen (1998)
A Violation Duration-based Test – Christoffersen and Pelletier (2004)
A Discrete Violation Duration-based Test – Haas (2005)
A Dynamic Quantile Test – Engle and Manganelli (2004)
A Dynamic Quantile Test – Gaglianone et al. (2011)
A GMM Duration Test – Candelon et al. (2011)
A Multivariate Test of Zero-autocorrelation of Violations – Hurlin and Tokpavi

(2006)
An Estimation-risk adjusted Test – Escanciano and Olmo (2009, 2010, 2011)
A MCS Test – Ziggel et al. (2013)

Exception frequency and independence of violations tests
Intuition: test jointly the hit ratio and the independence of VaR violations
A Conditional Coverage Test – Christoffersen (1998)
A GMM Duration Test – Candelon et al. (2011)
A Dynamic Binary Response Test – Dumitrescu et al. (2012)
A Geometric-VaR Test – Pelletier and Wei (2014)
A MCS Test – Ziggel et al. (2013)
A Multilevel Test – Leccadito et al. (2013)

Exception magnitude tests
Intuition: test the amplitude of VaR violations (that should be small)
A.4. Measurement error

Financial data are prone to measurement errors caused by var-
ious phenomena such as non-synchronous trading, rounding
errors, infrequent trading, micro-structure noise or insignificant
volume exchanges. In addition, observed data might be subject to
manipulations (smoothing, extra revenues, fraudulent exchanges,
informationless trading, etc).

Measurement error risk can strongly distort backtesting results
and significantly affects the performance of standard statistical
tests used to backtest VaR models. Frésard et al. (2011) extensively
document the phenomena and report that a large fraction of banks
artificially boost the performance of their models by polluting their
‘‘true’’ profit and loss with extra revenues that cause under-esti-
mation of the true risk.

Example 4. Certain financial institutions report a contaminated
P&L (denoted PLc

t ) with extraneous profits (denoted pt)) such as
intraday revenues, fees, commissions, net interest incomes and
revenues from market making or underwriting activities as such:

PLc
t ¼ PLt þ pt;

with PLt the true profit at time t.
So, the estimated VaR is impacted by a contamination risk

(denoted CRð�Þ) that reads:

EVaRðh;a;pÞ ¼ ThVaRðh;aÞ þ CRðpÞ:

A Magnitude Test (under normality assumption) – Berkowitz (2001)
A Test based on a Loss Function – Lopez (1998, 1999)
A Two-stage Test (Coverage Rate and Loss Function) – Angelidis and

Degiannakis (2007)
A Double-threshold Test – Colletaz et al. (2013)

Exceedances for expected shortfall test
Intuition: Measure the observed ES, then compare to a local approximated value
(and the difference should be small)
A Saddlepoint Technique Test for ES – Wong (2008, 2010)

See, among others, Campbell (2007), Nieto and Ruiz (2008) and Berkowitz et al.
(2011) for comprehensive surveys.
A.5. Liquidity risk

While liquidity has many meanings, from the point of view of
risk forecasting, the most relevant are some aspects of market
liquidity, as defined by the BCBS (2010), such as the ability to
quickly trade large quantities, at a low cost, without impacting
the price. These directly follow from Kyle’s (1985) three dimen-
sions of liquidity: tightness, depth and resilience.

For portfolios of illiquid securities, reported returns will tend to
be smoother than true economic returns, which will understate
volatility and increase risk-adjusted performance measures such
as the Sharpe ratio. As an extreme example of illiquidy, we can
mention that the NY stock exchange remained shut for more than
four months at the beginning of the First World War (from the 31st
July, 1914 to the 12th December, 1914) and that the re-opening
brought the largest one-day percentage drop in the DJIA
(�24.4%).15

Getmansky et al. (2004) propose, for instance, an econometric
model of illiquidity exposure and develop estimators for the
smoothing profile as well as a smoothing-adjusted Sharpe ratio
(that basically leads to the intensification of the measured
smoothed volatility by a factor to recover a proxy of the true
underlying volatility). Measures for gauging illiquidity exposure
of several asset classes are presented in Chan et al. (2006).
Liquidity aspects enter the Value-at-Risk methodology quite
naturally. The VaR approach is built on the hypothesis that ‘‘market
prices represent achievable transaction prices’’ (Jorion, 2007). In
other words, the prices used to compute market returns in the
VaR models have to be representative of market conditions and
traded volume. Consequently, the price impact of portfolio
liquidation has to be taken into account. Chordia et al. (2001) find
a significant cross-sectional relation between stock returns and the
15 See e.g. Silber (2005).
variability of liquidity, which is approximated by measures of trad-
ing activity such as volume and turnover. Giot and Grammig
(2005), using a weighted spread in an intraday VaR framework,
show that accounting for liquidity risk becomes a crucial factor
and that the traditional (frictionless) measures severely underesti-
mate the true VaR.

Example 5. As a simple illustration, we can formalize that risk
using the following relation (with the previous notations):

P̂Lt ¼ PLt þ p1;t þ 1ILep2;t ;

where p1;t is a factor that contributes to the smoothing of the
released prices and p2;t a liquidity risk premium that only occurs
when a liquidity event happens (denoted Le, such as quotation
interruption, due to large movement in the market related to an
exogenous shock: war, terrorist attack, a large collapse . . .), mod-
elled here thanks to a Heaviside function (1I�) that takes the value
1when the event happens, which leads to a biased estimated VaR
with a liquidity risk (denoted LRð�Þ) as:

EVaRðh;a;p1;p2Þ ¼ ThVaRðh;aÞ þ LRðp1;p2Þ:



Table C.1
Illustrations of unconditional simulated errors associated to the 95%, 99% and 99.5% annualized VaR: Gaussian versus t-Student quantiles.

Probability Mean estimated VaR Perfect VaR Mean bias Median bias Min. bias Max. bias

Panel A. Gaussian DGP and Gaussian VaR with estimation error
a = 95.00 �29.49 �29.49 .00 .00 �7.93 7.24
a = 99.00 �41.88 �41.88 .00 .00 �9.92 9.17
a = 99.50 �46.41 �46.41 .00 .00 �12.45 10.16

Panel B. t-Student(5) DGP and Gaussian VaR with specification error
a = 95.00 �29.49 �36.22 �6.73 �6.73 �6.73 �6.73
a = 99.00 �41.88 �60.75 �18.87 �18.87 �18.87 �18.87
a = 99.50 �46.41 �72.87 �26.46 �26.46 �26.46 �26.46

Panel C. t-Student(5) DGP and Gaussian VaR with specification and estimation errors
a = 95.00 �29.49 �36.22 �6.73 �6.73 �13.97 1.20
a = 99.00 �41.88 �60.75 �18.87 �18.87 �28.04 �8.95
a = 99.50 �46.41 �72.87 �26.46 �26.46 �36.62 �14.01

Source: Bloomberg; daily data of the DJIA index in USD from the 1st January, 1900 to the 20th September, 2011. These statistics were computed with the results of 100,000
simulated series of 250 daily returns according to a specific DGP (Gaussian for Panel A and t-Student(5) for Panel B and C) and using an annualized parametric VaR. The
columns represent, respectively, the average Estimated VaR with specification or/and estimation errors, the Theoretical VaR, and the average-minimum–maximum of the
adjustment terms of all samples. A positive adjustment term indicates that the Estimated VaR (negative return) should be more conservative (more negative).

Table C.2
Estimated annualized VaR and model-risk errors (%) in the Brownian case.

Probability (%) Mean estimated VaR (%) Perfect VaR (%) Mean bias (%) Median bias (%) Min. bias (%) Max. bias (%)

Panel A. Gaussian DGP and Gaussian VaR with estimation error
a = 95.00 �24.78 �24.78 .00 .00 �8.69 10.16
a = 99.00 �35.74 �35.74 .00 .00 �14.21 20.70
a = 99.50 �39.95 �39.95 .00 .00 �16.04 28.92

Panel B. Brownian DGP and Gaussian VaR with specification error
a = 95.00 �29.49 �36.22 �6.73 �6.73 �6.73 �6.73
a = 99.00 �41.88 �60.75 �18.87 �18.87 �18.87 18.87
a = 99.50 �46.41 �72.87 �26.46 �26.46 �26.46 26.46

Panel C. Brownian DGP and Gaussian VaR with specification and estimation errors
a = 95.00 �29.49 �36.22 � 6.73 �6.73 �13.97 1.20
a = 99.00 �41.88 �60.75 �18.87 �18.87 �28.04 �8.95
a = 99.50 �46.41 �72.87 �26.46 �26.46 �36.62 �14.01

Three price processes of the asset returns are considered below, such as for t ¼ ½1; . . . ; T� and p ¼ ½1;2;3�:

dSt ¼ St ldt þ rdWt þ Jp
t dNt

� �
;

with J1
t ¼ 0 for Brownian, where St is the price of the asset at time t; Wt is a standard Brownian motion, independent from the Poisson process Nt , governing the jumps of

various intensities Jp
t (null, constant or time-varying according to the process p).

Source: simulations by the authors. Errors are defined as the differences between the ‘‘true’’ asymptotic simulated VaR and the Estimated VaR. These statistics were computed
with a series of 250,000 simulated daily returns with specific DGP (Brownian), averaging the parameters estimated in Aït-Sahalia et al., 2013Aït-Sahalia et al. (2013, Tabel 2,
i.e. b = 41.66%, k3 = 1.20% and c = 22.22%), and ex post recalibrated for sharing the same first two moments (i.e. l = .12% and r = 1.02%) and the same mean jump intensity (for
the last two processes – which leads after rescaling here, for instance, to an intensity of the Lévy such as: k2=1.06%). Per convention, a negative adjustment term in the table
indicates that the Estimated VaR (negative return) should be more conservative (more negative).
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Appendix B. Main backtest procedures

We present hereafter three tests proposed in the literature to
gauge the accuracy of VaR estimates.

The first test for a good VaR is the so-called ‘‘traffic light’’
approach in the regulatory framework, related to the Kupiec
(1995) Proportion of Failure Test. The Unconditional Coverage test
(Kupiec, 1995) attempts to determine whether the observed fre-
quency of exceptions is consistent with the expected frequency
of exceptions according to a chosen VaR model and a confidence
interval (an exception occurs when the ex post return is below
the ex ante VaR).16 We define IEVaR

t ðaÞ as the ‘‘hit variable’’ associated
16 Note that the Basel ‘‘traffic light’’ backtesting framework is directly inspired by
this unconditional coverage test. Escanciano and Pei (2012) show, however, that this
unconditional test is always inconsistent in detecting non-optimal VaR forecasts
based on the historical method. In the following, nevertheless, we consider for our
adjustment procedure three of the main tests (including the unconditional coverage
test), as well as their bootstrapped corrected versions.
to the ex post observation of EVaRð�Þ exceptions at the threshold a at
date t, so that (with previous notations):

IEVaRð�Þ
t ðaÞ ¼ 1 if rt < �EVaRðĥ;aÞt�1

0 otherwise;

(
ðB:1Þ

where rt is the return on portfolio P at time t, with t ¼ ½1;2; . . . ; T�.
If we assume that the IEVaR

t ð�Þ variables are independently and
identically distributed, then, under the Unconditional Coverage
hypothesis of Kupiec (1995), the cumulated number of VaR viola-
tions follows a Binomial distribution, denoted BðT;aÞ, as (see
Christoffersen, 1998):

HitEVaRð�Þ
t ðaÞ ¼

XT

t¼1

IEVaRð�Þ
t ðaÞ � BðT;aÞ: ðB:2Þ

A perfect sequence of (corrected) empirical VaR in the sense of
this test (not too aggressive, but not too confident), is such that it
respects condition (B.2).



Table C.3
Estimated annualized VaR and model-risk errors (%) in the Lévy case.

Probability (%) Mean estimated VaR (%) Perfect VaR (%) Mean bias (%) Median bias (%) Min. bias (%) Max. bias (%)

Panel A. Gaussian DGP and Gaussian VaR with estimation error
a = 95.00 �24.78 �24.78 .00 .00 �8.69 10.16
a = 99.00 �35.74 �35.74 .00 .00 �14.21 20.70
a = 99.50 �39.95 �39.95 .00 .00 �16.04 28.92

Panel B. Lévy DGP and Gaussian VaR with specification error
a = 95.00 �29.49 �36.22 �6.73 �6.73 �6.73 �6.73
a = 99.00 �41.88 �60.75 �18.87 �18.87 �18.87 �18.87
a = 99.50 �46.41 �72.87 �26.46 �26.46 �26.46 �26.46
Panel C. Lévy DGP and Gaussian VaR with specification and estimation errors
a = 95.00 �29.49 �36.22 �6.73 �6.73 �13.97 1.20
a = 99.00 �41.88 �60.75 �18.87 �18.87 �28.04 �8.95
a = 99.50 �46.41 �72.87 �26.46 �26.46 �36.62 �14.01

Three price processes of the asset returns are considered below, such as for t ¼ ½1; . . . ; T� and p ¼ ½1;2;3�:

dSt ¼ St ldt þ rdWt þ Jp
t dNt

� �
;

with J2
t ¼ k2expð�k2tÞ for Lévy, where St is the price of the asset at time t; Wt is a standard Brownian motion, independent from the Poisson process Nt , governing the jumps of

various intensities Jp
t (null, constant or time-varying according to the process p), defined by parameters, k2, which is a positive constant.

Source: simulations by the authors. Errors are defined as the differences between the ‘‘true’’ asymptotic simulated VaR and the Estimated VaR. These statistics were computed
with a series of 250,000 simulated daily returns with specific DGP (Lévy), averaging the parameters estimated in Aït-Sahalia et al., 2013Aït-Sahalia et al. (2013, Table 2, i.e.
b = 41.66%, k3 = 1.20% and c = 22.22%), and ex post recalibrated for sharing the same first two moments (i.e. l ¼ :12% and r = 1.02%) and the same mean jump intensity (for the
last two processes – which leads after rescaling here, for instance, to an intensity of the Lévy with k2 = 1.06%). Per convention, a negative adjustment term in the table
indicates that the Estimated VaR (negative return) should be more conservative (more negative).

Table C.4
Estimated annualized VaR and model-risk errors (%) in the Hawkes case.

Probability (%) Mean estimated VaR (%) Perfect VaR (%) Mean bias (%) Median bias (%) Min. bias (%) Max. bias (%)

Panel A. Gaussian DGP and Gaussian VaR with estimation error
a = 95.00 �24.78 �24.78 .00 .00 �8.69 10.16
a = 99.00 �35.74 �35.74 .00 .00 �14.21 20.70
a = 99.50 �39.95 �39.95 .00 .00 �16.04 28.92

Panel B. Hawkes DGP and Gaussian VaR with specification error
a = 95.00 �29.49 �36.22 �6.73 �6.73 �6.73 �6.73
a = 99.00 �41.88 �60.75 �18.87 �18.87 �18.87 �18.87
a = 99.50 �46.41 �72.87 �26.46 �26.46 �26.46 �26.46

Panel C. Hawkes DGP and Gaussian VaR with specification and estimation errors
a = 95.00 �29.49 �36.22 �6.73 �6.73 �13.97 1.20
a = 99.00 �41.88 �60.75 �18.87 �18.87 �28.04 �8.95
a = 99.50 �46.41 �72.87 �26.46 �26.46 �36.62 �14.01

Three price processes of the asset returns are considered below, such as for t ¼ ½1; . . . ; T� and p ¼ ½1;2;3�:

dSt ¼ St ldt þ rdWt þ Jp
t dNt

� �
;

with J3
t ¼ k3 þ bexp½�cðt � sÞ� for Hawkes, where St is the price of the asset at time t; Wt is a standard Brownian motion, independent from the Poisson process Nt , governing the

jumps of various intensities Jp
t (null, constant or time-varying according to the process p), defined by parameters, k3; b and c, which are positive constants with s the date of the

last observed jump.
Source: simulations by the authors. Errors are defined as the differences between the ‘‘true’’ asymptotic simulated VaR and the Estimated VaR. These statistics were computed
with a series of 250,000 simulated daily returns with specific DGP (Hawkes), averaging the parameters estimated in Aït-Sahalia et al., 2013Aït-Sahalia et al. (2013, Table 2, i.e.
b = 41.66%, k3 = 1.20% and c = 22.22%), and ex post recalibrated for sharing the same first two moments (i.e. l = .12% and r = 1.02%) and the same mean jump intensity. Per
convention, a negative adjustment term in the table indicates that the Estimated VaR (negative return) should be more conservative (more negative).
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The second test for a good VaR concerns the independence of
forecasting errors. The independence hypothesis is associated to
the idea that if the VaR model is correct then violations associated
to VaR forecasting should be independently distributed, it is also
the independence of exceptions hypothesis. If the exceptions exhi-
bit some type of ‘‘clustering’’, then the VaR model may fail to cap-
ture the profit and loss variability under certain conditions, which
could represent a potential problem down the road. Christoffersen
(1998) supposes that, under the alternative hypothesis of VaR inef-
ficiency, the process of IEVaR

t ðaÞ violations is modelled with a Mar-
kov chain whose matrix of transition probabilities is defined by:

P ¼
p00 p01

p10 p11

 �
; ðB:3Þ
where pij ¼ Pr IEVaR
t ðaÞ ¼ jjIEVaR

t�1 ¼ i
h i

. This Markov chain reflects the
existence of an order 1 memory in the process IEVaR

t ðaÞ. The proba-
bility of having a violation (not having one) for the current period
depends on the occurrence or not of a violation (for the same level
of coverage rate) in the previous period. Christoffersen (1998)
shows that the likelihood ratio for the test is:

LRindIEVaR
t ðaÞ ¼ 2 log LIEVaR

t ðaÞðp01;p11Þ � log LIEVaR
t ðaÞðp;pÞ

h i
!d

> v2ð1Þ; ðB:4Þ

where LIEVaR
t ðaÞðp01;p11Þ is thus the likelihood under the hypothesis of

the first-order Markov dependence, and LIEVaR
t ðaÞðp;pÞ is the likeli-

hood under the hypothesis of independence p01 ¼ p11 ¼ p as:



Table C.5
Dates of the maximum adjustment for different 95% VaRs and backtest models at 5% confidence level.

VaR methods Dates q1 (%) Dates q�1 (%) Dates q2 (%) Dates q�2 (%) Dates q3 (%) Dates q�3 (%)

Historical 1 02/09/2009 42.02 01/16/2009 32.80 09/08/1930 78.26 04/06/2009 52.18 08/24/2009 49.91 09/08/1930 95.06
2 11/28/2008 40.60 01/06/1930 31.94 04/06/2009 46.46 08/24/2009 42.02 09/08/1930 48.91 04/21/1930 78.26
3 10/16/1930 39.97 01/05/1933 21.73 07/25/1988 42.52 04/21/1930 40.15 04/06/2009 47.68 12/02/1929 72.61
4 12/11/1929 37.75 01/06/1931 19.87 03/07/1988 40.82 12/02/1929 37.79 11/17/2008 46.46 04/06/2009 65.07

Normal 1 11/28/2008 42.86 01/16/2009 30.07 09/08/1930 74.43 08/24/2009 44.46 04/06/2009 44.46 09/08/1930 88.47
2 12/11/1929 38.57 01/06/1930 25.55 07/25/1988 39.56 11/17/2008 42.86 11/17/2008 42.86 12/02/1929 74.43
3 09/14/2009 38.07 01/05/1933 17.88 12/02/1929 38.57 09/08/1930 42.45 12/02/1929 38.86 11/17/2008 62.83
4 11/11/1929 36.69 01/06/1938 14.92 03/07/1988 34.42 12/02/1929 38.86 04/21/1930 38.57 04/21/1930 59.24

Student 1 11/28/2008 40.16 01/16/2009 30.02 09/08/1930 68.50 04/06/2009 45.93 09/08/1930 50.18 09/08/1930 101.52
2 12/11/1929 33.06 01/06/1930 18.40 12/02/1929 68.18 08/24/2009 40.27 04/06/2009 44.50 11/17/2008 86.13
3 09/14/2009 32.85 01/05/1933 14.25 07/25/1988 35.52 12/02/1929 35.86 12/02/1929 33.57 03/07/1988 71.79
4 11/11/1929 31.43 01/13/1975 11.14 03/07/1988 30.26 09/08/1930 34.80 04/21/1930 33.06 12/02/1929 68.50

Cornish 1 05/13/1915 133.65 01/04/1916 120.56 02/14/1916 135.43 09/27/1915 142.87 09/27/1915 135.43 09/27/1915 142.87
Fisher 2 05/07/1915 133.36 01/04/1915 106.47 09/27/1915 133.86 05/10/1915 133.86 05/10/1915 133.86 05/10/1915 130.22

3 05/06/1915 131.48 01/03/1917 82.83 05/10/1915 133.65 02/14/1916 114.82 02/14/1916 117.67 04/09/1917 111.55
4 05/04/1915 130.22 01/14/1988 76.04 09/08/1930 93.47 07/03/1916 90.03 03/07/1988 90.73 09/08/1930 93.47

Risk 1 03/28/1938 15.85 01/04/1921 10.50 05/10/1915 32.76 12/02/1929 16.43 12/02/1929 16.43 03/21/1932 46.62
Metrics 2 10/28/1929 15.02 01/06/1938 9.14 12/02/1929 31.91 05/03/1920 16.33 05/09/1938 16.04 12/20/1937 32.36

3 03/15/1938 14.80 01/02/1908 7.88 04/21/1930 30.51 09/26/1938 15.85 12/20/1937 14.57 03/07/1988 31.92
4 01/25/1938 14.57 01/06/1930 5.64 07/25/1988 26.69 09/08/1930 15.02 05/03/1920 14.35 12/02/1929 31.91

GARCH 1 03/24/1938 18.24 01/06/1930 15.50 09/08/1930 41.44 05/09/1938 18.48 12/02/1929 19.42 05/09/1938 39.61
2 04/06/1938 18.15 01/06/1938 9.28 12/02/1929 34.12 12/20/1937 18.24 05/03/1920 18.55 11/02/1931 35.40
3 10/28/1929 17.17 01/02/1908 8.09 07/25/1988 32.49 09/26/1938 18.15 05/09/1938 18.48 12/20/1937 34.98
4 03/15/1938 16.78 01/17/2008 7.01 03/07/1988 30.73 12/02/1929 17.17 09/08/1930 17.17 03/07/1988 33.59

CAViaR 1 01/21/1994 30.10 01/17/2008 24.96 09/24/2007 41.75 02/11/2008 35.73 09/24/2007 33.48 03/21/1932 41.32
2 06/06/2007 29.81 01/14/1994 20.53 09/08/1930 41.44 04/25/1994 32.95 04/25/1994 31.72 11/30/1998 38.82
3 02/26/2008 28.11 01/17/2006 15.47 12/02/1929 34.12 09/24/2007 32.64 04/19/1999 23.31 10/19/1987 33.59
4 03/11/2008 26.93 01/15/1999 13.87 07/25/1988 32.49 09/12/1994 31.72 07/31/2006 19.50 04/19/1999 31.35

GEV 1 11/28/2008 39.05 01/06/1930 32.12 09/08/1930 72.11 08/24/2009 48.25 04/06/2009 45.07 04/21/1930 112.42
2 12/11/1929 36.82 01/16/2009 29.52 12/02/1929 61.01 04/06/2009 41.84 08/24/2009 41.84 09/08/1930 75.87
3 11/11/1929 35.24 01/05/1933 14.55 03/07/1988 34.35 04/21/1930 37.15 04/21/1930 39.52 12/02/1929 72.11
4 09/14/2009 33.32 01/08/1947 13.62 11/17/2008 29.52 12/02/1929 35.24 11/17/2008 39.05 11/17/2008 56.53

GPD 1 11/28/2008 37.89 01/16/2009 26.98 09/08/1930 71.38 11/17/2008 42.33 04/06/2009 43.75 04/21/1930 105.01
2 09/14/2009 34.58 01/06/1930 25.64 04/06/2009 42.33 04/21/1930 35.69 08/24/2009 42.33 09/08/1930 71.38
3 12/11/1929 32.86 01/06/1931 10.30 12/02/1929 32.86 12/02/1929 32.86 04/21/1930 32.86 12/02/1929 67.67
4 07/18/1930 32.80 01/05/1933 7.67 07/25/1988 31.95 05/09/1938 29.66 09/08/1930 32.80 11/17/2008 52.51

Source: Bloomberg; daily data of the DJIA index in USD from the 1st January, 1900 to the 20th September, 2011. We use a moving window of four years (1040 daily returns) to
re-estimate parameters dynamically for the various methods. The variable q1 refers to the hit test; q2 to the independence test; q3 to the magnitude test; and q�1; q�2; q�3
correspond to their resampling versions, following Escanciano and Olmo (2009, 2010, 2011).

Table C.6
Minimum k ratio model risk for 95% annualized value-at-risk models for various validity tests with 5%.

VaR methods Mean VaR (%) q1 q�1 q2 q�2 q3 q�3

Historical �25.78 2.37 2.08 3.29 2.53 2.59 3.79
Normal �27.09 2.26 1.84 2.84 2.31 2.32 3.18
Student �30.52 2.02 1.73 2.52 2.04 2.04 3.31
Cornish–Fisher �20.25 3.45 3.73 4.88 4.76 3.72 4.88
RiskMetrics �25.67 1.71 20.77 57.18 41.47 36.84 101.69
GARCH �25.99 1.59 1.75 2.65 1.85 1.94 2.35
CAViaR �26.84 10.95 9.82 23.89 8.9 8.55 7.6
GEV �29.71 2.01 1.72 2.37 2.13 2.06 3.24
GPD �33.97 2.04 1.69 2.64 2.21 2.01 3.63

Source: Bloomberg; daily data of the DJIA index in USD from the 1 st January, 1900 to the 20th September, 2011. We use a moving window of four years (1040 daily returns) to
dynamically re-estimate parameters for the various methods. The variable q1 refers to the hit test; q2 to the independence test; q3 to the magnitude test; and q�1; q�2; q�3
correspond to their resampling versions, following Escanciano and Olmo (2009, 2010, 2011).
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LIEVaR
t ðaÞðp01;p11Þ ¼ ð1� p01ÞT00pT10

01 ð1� p11ÞT10pT11
11 ;

and

LIEVaR
t ðaÞðp;pÞ ¼ ð1� pÞT00þT10pT01þT11 ;

with Tij the number of observations in the state j for the current per-
iod and at state i for the previous period, p01 ¼ T01=ðT00 þ T01Þ;
p11 ¼ T11=ðT10 þ T11Þ and p ¼ ðT01 þ T11Þ=T .
A perfect sequence of corrected (empirical) VaR in the sense of
this test (i.e. not too reactive, but not too smooth) is such that it
respects condition (B.4).

A third category of tests considers the magnitude or size of vio-
lation. This class of tests is based on the intuition that VaR excep-
tions are treated as continuous random variables. For this test,
Berkowitz (2001) transforms the empirical series into a standard
normal ztþ1 series. He defines the observed quantile qtþ1 with the
distribution forecast ftþ1 for the observed portfolio return rt as:



Fig. C.1. Risk map for maximum annualized adjustment values at 5% confidence levels for tests for 95% and 99% value-at-risk models (see Colletaz et al., 2013). Source:
Bloomberg; daily data of the DJIA index in USD from the 1st January, 1900 to the 20th September, 2011; computations by the authors. We use a moving window of four years
(1040 daily returns) to dynamically re-estimate parameters for the various methods. The variable q1 refers to the hit test; q2 to the independence test; q3 to the magnitude
test; and q�1; q�2; q�3 correspond to their resampling versions, following Escanciano and Olmo (2009, 2010, 2011).
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Fig. C.2. Dynamic optimal adjustment on the daily 95% VaR related to the hit test for 10-year sample estimation data. Source: Bloomberg; daily data of the DJIA index in USD
from the 1st January, 1900 to the 7th October, 2013; computations by the authors. We use a moving window of ten years (2600 daily returns) to re-estimate parameters
dynamically for the various methods.
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qtþ1 ¼
Z rtþ1

�1
ftþ1ðrÞdr: ðB:5Þ

The ztþ1 values are then compared to the normal random vari-
ables with the desired coverage level of the VaR estimates:

ztþ1 ¼ U�1ðqtþ1Þ; ðB:6Þ

where U�1ð�Þ is the quantile function of the standard normal
density.

If the VaR model generating the empirical quantiles is correct,
then the ctþ1 series should be identically distributed with the
unconditional mean and standard deviation, denoted ðl;rÞ and
should equal ð0;1Þ, as such:

ctþ1 ¼
ztþ1 if ztþ1 < U�1ðaÞ
0 otherwise;

(
ðB:7Þ

where Uð�Þ is the standard normal cumulative distribution function.
Finally, the corresponding test statistic is:

LRmagctþ1 ¼ 2 Lctþ1
magðl;rÞ � Lctþ1

magð0;1Þ
h i

!d > v2ð2Þ; ðB:8Þ

where
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Fig. C.3. Optimal dynamic absolute value of minimum negative adjustments for the hit test for different 95% VaR – 10-year sample estimation data. Source: Bloomberg; daily
data of the DJIA index in USD from the 1st January, 1900 to the 7th October, 2013; computations by the authors. We use a moving window of ten years (2600 daily returns) to
re-estimate parameters dynamically for the various methods.
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Fig. C.4. Optimal dynamic relative adjustment for the hit test for different starting dates and 95% VaR by horizon (in years) – 10 years sample estimation data. Source:
Bloomberg; daily data of the DJIA index in USD from the 1st January, 1900 to the 7th October, 2013; computations by the authors. We use a moving window of ten years (2600
daily returns) to dynamically re-estimate parameters for the various methods. This figure illustrates the dynamic negative adjustment required for passing the hit test, having
randomly chosen the first date of implementation. Optimal relative negative adjustments are here expressed in terms of the percentage of their maximum value over the
whole sample.
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Lctþ1
magðl;rÞ¼

X
fctþ1¼0g

log 1�U
U�1ðaÞ�l

r

( )( )

þ
X

fctþ1–0g
�1

2
logð2pr2Þ�ðctþ1�lÞ2

2r2 � log U
U�1ðaÞ�l

r

( )( )( )
:

A perfect sequence of (corrected) empirical VaR in the sense of
this test ( i.e. not too conservative, but not too over-confident) is
such that it respects condition (B.8).

For unconditional and conditional coverage tests, Escanciano
and Olmo (2009, 2010, 2011) approximate the critical values. Thus,
they propose to use robust sub-sampling techniques to approxi-
mate the true distribution of these tests. However, they also show
that although the estimation risk can be diversified by choosing a
large in-sample size relative to an out-of-sample one, the risk asso-
ciated to the model cannot be eliminated using sub-sampling.
Indeed, let GxðxÞ denote the cumulative distribution function of
the test statistic k for any x 2 IR, and, kb;t ¼ Kðt; t þ 1; � � � ;
t þ b� 1Þ, with t ¼ ½1;2; � � � ; T � bþ 1�, the test statistic computed
with the subsample ½1;2; � � � ; T � bþ 1� of size b.

Hence, the approximated sampling cumulative distribution
function of k, denoted Gkb

ðxÞ, built using the distribution of the val-
ues of kb;t computed over the ðT � bþ 1Þ different consecutive
subsamples of size b is given by:

Gkb
ðxÞ ¼ ðT � bþ 1Þ�1

XT�bþ1

t¼1

1Ifkb;t<xg: ðB:9Þ

The ð1� sÞth sample quantile of Gkb
, is given by: (see Table. B.1)

ckb ;1�s ¼ inf|{z}
x2IR

fxjGkb
ðxÞP 1� sg: ðB:10Þ
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Appendix C. Miscellaneous complementary results

See Tables C.1, C.2, C.3, C.4, C.5 and C.6.
See Figs. C.1, C.2, C.3, C.4, C.5 and C.6.
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