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Factor investing has attracted increasing interest in the investment industry because purely active
and passive solutions have underperformed. Its success depends critically on identifying the factors
involved and timing this well, but this is hard to do because there is such a zoo of factors, and
those factors and their loadings are time-varying. We thus propose an investment rule that we call
‘Smart Alpha’, which avoids betting on a-priori factors but focuses instead on an active approach
that minimises the exposure of the portfolio to systematic sources of risk while maximising its alpha.
This means our choice is to bet on alphas instead of alternative betas. We use stocks in the European
STOXX 600 universe to show empirically that the Smart Alpha portfolio dominates many popular
European factor investing indexes and smart beta strategies.

Keywords: Portfolio optimisation; Factor investing; Zoo of factors; Sparse latent factors; Time-
varying factors

JEL Classifications: C1, C50, C61, G11, G12

1. Introduction

This article proposes an active investment approach for allo-
cating equity portfolios. The strategy consists of betting on
alphas, rather than on specified a-priori factors that the factor
investing approach does. This is done through a strategy we
call ‘Smart Alpha’, which maximises alpha, or the expected
return that is uncorrelated to various systematic sources of
risk, while minimising the systematic risk from exposure to
these risk factors. Computationally, the alphas of stocks and
their exposures to their driving factors are estimated using
Sparse Principal Component Analysis (SPCA), a dimension
reduction method from machine learning, coupled with a
methodology for timing the optimal number of unknown
relevant factors.

The efficiency of the Markowitz (1952) mean-variance
optimised portfolios and of the market-capitalisation weight-
ing derived from the Capital Asset Pricing Model (Sharpe
1964) has recently been challenged. They use a rather
‘heroic’ set of assumptions (stability in the expected returns
and the variance-covariance matrix, no estimation risk,
normal returns, no constraints on short selling, homo-
geneous expectations, and more) to guarantee that no

*Corresponding author. Email: sessi.tokpavi@univ-orleans.fr

other portfolios with the same risk have higher expected
return. Furthermore, mean-variance optimised portfolios
and market-capitalisation weighted portfolios perform rel-
atively poorly out-of-sample (see for example Bloomfield
et al. 1977, DeMiguel et al. 2009, Tu and Zhou 2011, Behr
et al. 2012, Kourtis et al. 2012). The consequence is
that alternative weighting schemes and heuristic approaches
(equally weighted, minimum variance, most diversified port-
folio, equally weighted risk contributions, risk budgeting or
risk parity)† have recently been proposed and have rapidly
attracted asset managers and large institutional investors
under the labels ‘smart beta’ or ‘factor investing’.‡ The idea
underlying these approaches is to capture risk factors and thus
risk premiums like low volatility, momentum, quality, value
and size.

The rise of factor investing stems from the findings of
academic research into the existence of some common risk
factors beyond the market index. This strand of literature,
which can be dated back to the seminal work of Fama and

† See Choueifaty and Coignard (2008), Meucci (2009), Maillard
et al. (2010).
‡ Smart beta assets under management have grown by 500 % since
2008 to $616 billion at the end of 2015 according to data from Morn-
ingstar ( ‘Smart beta defenders dismiss fears, but doubts linger ’, 11
September 2016 Financial Times).
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French (1992), has discovered many market variables or fac-
tors that may be able to explain the cross-sectional variations
of stock returns. These include the size and value factors
in Fama and French (1992) and the momentum factor in
Jegadeesh and Titman (1993). The result is that what is tra-
ditionally called alpha in Sharpe’s single index model appears
instead as beta in disguise. This raises concerns in the finan-
cial world about how relevant active portfolio management is,
as the alpha of a stock measured by the average excess returns
over factor risk premiums naturally shrinks as more factors
are identified and are subject to bets. However, there are three
arguments that qualify this assertion.

The first is that the number of factors reported in
the academic literature has become so numerous that
Cochrane (2011) spoke of them as a ‘zoo of factors’ in his
2011 presidential address to the American Finance Asso-
ciation.† There have been some attempts in the empirical
literature to gauge the relevance of these numerous factors,‡
and Lewellen et al. (2010) for instance focus on biases in
the cross-sectional regressions for asset pricing tests and
show that the explanatory power of many of the factors
suggested are spurious (see also Bai and Ng 2006, Har-
vey et al. 2016, Ahn et al. 2018). The second issue is that
beyond this uncertainty about the number of factors and which
ones really drive the cross-sectional variations of stocks, the
success of factor investing is anchored in how accurately
portfolio managers can time when a given factor is going
to be rewarded by the market. This task is by nature com-
plicated because the factors and loadings in markets are
potentially time varying (Kelly et al. 2019) in response to
changes in beliefs or in how markets price different stories
(e.g. Shiller 2017, Gennaioli and Shleifer 2018). The third
argument is that even in the ideal case when the factors
rewarded are timed accurately, there is still a significant prob-
ability that stocks will have alphas that arise from stochastic
mispricing relative to the asset pricing model, and from cor-
rections of earlier over-reactions to news (de Bondt and
Thaler 1985, 1987), slow adjustments to firm-specific news
(Jegadeesh and Titman 1993), unanticipated increases in mar-
ket illiquidity (Amihud 2002), and the state of sentiment (Lee
et al. 1991).

From these stylised facts, we propose an approach that
can be viewed as an orthogonal take to the factor investing
approach, and investigate its empirical properties. We call
this approach ‘Smart Alpha’, and it works by reducing expo-
sures to various systematic sources of risk while maximising
the expected return that is uncorrelated with these main risk
factors. Rather than betting on specific a-priori factors as in
the factor investing approach, we focus instead on an active
approach that minimises the portfolio’s exposures to system-
atic latent sources of risk while maximising its alpha, which is
given by the expected mispriced returns from an asset pricing
model. Our choice is thus to bet on alphas instead of on alter-
native betas as the factor investing approach does. A further

† In the same vein William Sharpe said ‘When I hear smart beta, it
makes me sick’ at the CFA Institute Annual conference in Seattle on
5 May 2014.
‡ Relevance means robust factors that are free of data snooping,
and which approximate exposures to systematic sources of risk with
consistent long-term risk premiums.

reason for this choice is that empirical regularities about the
predictability of alphas are reported in the literature. Zaremba
et al. (2019) demonstrate predictive power over future returns
from using alphas based on a multi-factor model with one
year of data, allowing them to document an alpha momen-
tum phenomenon for country and industry equity indexes in
Europe. We hypothesise that it is likely that this phenomenon
also holds for individual stocks, and our strategy intends to
exploit this by maximising the portfolio’s alpha.

The success of our strategy depends deeply on specify-
ing the asset pricing model correctly in order to capture the
alphas of the stocks over time as measured by the average
mispriced returns. To achieve this we build on an exciting
literature in statistics that focuses on estimating the number
of factors in large dimensional latent factor models (Lew-
bel 1991, Connor and Korajczyk 1993, Donald 1997, Bai and
Ng 2002, Onatski 2010, Ahn and Horenstein 2013). More
precisely, we follow Bai and Ng (2002), who introduced
statistics of the information criteria type into the framework
of an approximate factor model to estimate the number of
latent factors. Their statistics are similar to the Akaike or
Bayesian information criteria used for model selection in a
linear regression model, and they are a compromise between
the average variance of idiosyncratic returns and the number
of factors. We use their method rather than more recent ones
as it is simple to understand, like any information criterion
should be, and it has been shown not to be inferior to the other
methods in our context, where the variance of the systematic
part of stock returns is likely to be larger than the idiosyncratic
part.§

The second main contribution of this paper, besides deter-
mining the optimal number of factors to help avoid speci-
fication errors in the latent factor model and guarantee that
the stock’s alphas are identified correctly, is to estimate the
alphas of a stock based on the betas¶ extracted from the
sparse principal component analysis (SPCA). SPCA is a well-
known methodology in machine learning that has applications
in many fields including image processing, facial recognition,
gene expression data analysis, multi-scale data processing,
and more. In contrast to the traditional PCA, in which each
factor is a linear combination of all the input variables, this
method sets some of the loadings to exactly zero, so reduc-
ing estimation error. Small loadings (or exposures of a stock
to latent factors) are indeed the most subject to irrelevant
variability over time because they correspond to statistical
noise. Sparsity thus introduces stability into the loadings of
the stocks, or its betas, and consequently into its alphas.

It should be stressed that by minimising exposures to the
various systematic sources of risk, Smart Alpha has some sim-
ilarities to the Betting-Against-Beta (BAB) investment rule
that was popularised by the prominent work of Frazzini and
Pedersen (2014). This rule states that a significant proportion
of investors in the market are prohibited from using lever-
age or are limited in how much they may do so because of

§ Empirical results, which are available from the authors upon
request, show that using the more recent methods does not add value.
¶ It may be recalled that the alpha for a given stock corresponds to
the average returns beyond the achieved factor risk premiums that
depend on their associated loadings or betas.
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margin requirements. In consequence these investors go over-
weight in risky or high-beta stocks instead of using leverage,
and this then makes those stocks more expensive. High-beta
risky stocks are consequently overvalued and are associated
with low realised alpha. Obviously, a simple strategy for cap-
italising on this behaviour is to construct a low-beta portfolio
like that used in the Smart Alpha strategy.

Our approach goes beyond the BAB investment rule in
three essential points though. First, the Smart Alpha strategy
not only minimises the exposure or the beta of a portfolio, but
it also aims to maximise the alpha of that portfolio. It differs
in this from the BAB rule, which only selects a low-beta port-
folio and allows its alpha to be realised following the promise
of the negative relation between betas and alphas. The sec-
ond difference is that traditional implementations of the BAB
strategy are based on betas that are identified as exposures to a
fixed number of empirical factors (market, size, value), while
our approach considers latent factors, and the number of these
may vary over time as market conditions change. The third
point is that a robust approach (SPCA) is used to estimate both
the alphas and the betas, and this cleans out as much noise as
possible.

Using stocks in the European STOXX 600 universe, we
show empirically that our Smart Alpha portfolio is econom-
ically and statistically superior to many popular European
factor investing indexes, the BAB portfolio, and more gen-
erally smart beta portfolios. The raw returns, average realised
returns and risk-adjusted returns are, on average, higher than
those of the competing portfolios, while the downside risk as
measured by the maximum drawdown is lower. Moreover, we
evaluate the economic value of using the SPCA to estimate the
exposures and alphas of the stocks instead of the traditional
PCA, and we observe significant economic gains.

The article is organised as follows. Section 2 presents the
optimisation programme that underlies the Smart Alpha strat-
egy together with a description of the latent factor model for
asset pricing. Section 3 presents the method for identifying
the optimal number of latent factors, and describes the SPCA
methodology for estimating the exposures and alphas of the
stocks. Section 4 compares the out-of-sample performances
of the Smart Alpha portfolio with the MSCI factor investing
indexes, BAB portfolios and popular smart beta portfolios,
while Section 5 investigates the economic value of the new
portfolio and its sensitivity to traditional factors. The last
section concludes the paper.

2. The Smart Alpha investment strategy

This section describes our Smart Alpha investment strategy.
The first part of the section describes the underlying optimi-
sation programme, and the second part specifies the statistical
asset pricing model used for estimating the main inputs, which
are the alphas and betas of the stocks.

2.1. The optimisation programme

To describe the Smart Alpha optimisation programme, let ω
be a vector of length N with elements that are the weights of

a given portfolio, where N denotes the number of stocks in
the capitalisation universe. The mean idea of our strategy is
to bet on smart or intelligent alphas rather than on alternative
betas or risk premiums. More specifically, the two objectives
of the proposed strategy are to limit the exposures of the
optimal portfolio to the systematic sources of risk, and to max-
imise its alpha given by the average mispriced returns from an
asset pricing model. Starting from these two objectives, the
optimisation programme can be written as follows⎧⎨⎩ω̃ = arg min

ω

ω′�S ω

u.c. ω′α ≥ ε,ω ≥ 0,ω ≤ ω,ω′e = 1,
(1)

where α = (α1, . . . ,αN )
′ is the vector of length N of the

stock’s alphas, αp = ω′α is the portfolio’s alpha, σ 2
S,p =

ω′�Sω is the systematic portfolio’s variance with �S as
the (N , N) systematic covariance matrix from an asset pric-
ing model, ε > 0 is the required portfolio’s alpha, ω is the
upper-bound on the portfolio weights for the purpose of diver-
sification, and e is the unit vector of length N. The programme
incorporates an alpha targeting constraint in the low sys-
tematic risk portfolio strategy. In empirical applications, the
parameter ε is set to an extreme upper quantile of the esti-
mated alphas of the stocks.† We also consider stability issues
by adding a turnover constraint to the programme, which is
given by

N∑
i=1

∣∣ωi − ω0
i

∣∣ ≤ θ , (2)

where ω0
i is the weight of stock i in the owned portfo-

lio, and θ is the maximum value of wealth rebalancing for
each optimisation, which we set to 20% in the empirical
applications.

Two main remarks can be made about this optimisation pro-
gramme. First, the Smart Alpha strategy limits the portfolio’s
exposures to the main systematic risk factors, unlike the fac-
tor investing approach, in which the philosophy is to increase
exposures to empirical factors. Moreover, Smart Alpha min-
imises the exposures of stocks to systematic risk factors,
and so is in line with the desire of investors to see more
risk management practices being used in portfolio construc-
tion. Since the most recent global financial crisis there has
indeed been renewed interest in de-risking investment portfo-
lios as investors increasingly demand portfolio strategies that
could protect their wealth in volatile, falling markets. Long-
only equity portfolios can de-risk by reducing or targeting the
exposure of the portfolio to systematic risk factors.

As the second remark, it is worth stressing that by min-
imising the exposure of the portfolio to the main sources of
systematic risk while maximising its alpha, our strategy tries
to maximise a risk-adjusted measure of performance defined
as the ratio of the portfolio’s alpha to its systematic volatil-
ity. It differs in this from the Markowitz view of an active
portfolio strategy, in which the portfolio’s expected return is
maximised rather than its alpha, while the overall volatility of
the portfolio is reduced rather than the systematic volatility.

† More precisely, we begin at the 99% quantile and decrease the
order of the quantile by a small amount until convergence.
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Interestingly, we can show that in the simplified case when
the CAPM holds with the market portfolio as a single source
of risk, this risk-adjusted measure is nothing else but that of
Treynor (1965). In this case, and setting the risk-free rate to
zero without loss of generality, we have

αp

σS,p
= μp − βpμM√

β2
pσ

2
M

= μp

βpσM
− μM

σM
, (3)

where μp is the portfolio’s expected return, βpμM and β2
pσ

2
M

are respectively the portfolio equilibrium expected return and
systematic variance from the CAPM, βp is the portfolio beta,
and μM and σM are the expected return and volatility of
the market portfolio. Taking μM and σM as exogenous, it
appears from (3) that maximising our ratio thus corresponds
to maximising the Treynor Ratio given by μp/βp.

In the following section, we specify the factor model under-
lying the asset pricing model that we use to estimate the inputs
of our optimisation programme.

2.2. Specification of the factor model

The asset pricing model we consider is based on the dynamic
factor model (DFM) specification for asset returns (see
Geweke 1977, Sargent and Sims 1977)

rt = λ0ft + λ1ft−1 + · · · + λsft−s + et, (4)

where rt is the vector of length N of returns on the stocks,
ft is a vector of length q with elements the dynamic factors,
λj, j = 0, . . . , s, is a matrix of dimension (N , q) with elements
the exposures of stocks on the q dynamic factors, and et is the
vector of length N of idiosyncratic or residual returns at time
t. In the terminology of Bai and Ng (2007), the q dynamic
factors are called primitive shocks and are supposed to drive
the cross-sectional variations of the returns on the stocks.

Note that this dynamic model admits a static representation
given by

rt = 
Ft + et, (5)

where Ft = (f ′
t , f ′

t−1, . . . , f ′
t−s)

′ is a vector of length m =
q(1 + s) of static factors, and 
 = (λ0, λ1, . . . , λs) is a matrix
of dimension (N , m) of exposures to static factors. Our object
of interest here is the static representation of the dynamic
factor model where the m static factors are identified and
estimated. To put this differently we do not focus on identi-
fying the s primitive shocks as we do not need to do this to
estimate the two elements that are important for our invest-
ment strategy, which are the alphas and betas of the stocks.
With the static specification in (5), the systematic covari-
ance matrix �S in the optimisation programme (1) has the
following expression

�S = 
�F

′, (6)

where 
 is once again the (N , m) matrix of the exposures of
the stocks to static factors and �F is the (m, m) matrix cor-
responding to the covariance matrix of static factors. As for
α, which is the vector of length N of the alphas of the stocks

in the same optimisation programme, it is equal to the differ-
ence between μ, the expected value of rt, and μe, the vector
of expected equilibrium value, which is

α = E (et) = μ− μe = μ−
F, (7)

where F̄ is the vector of length m of expected returns on the
m factors.

We should stress that in specification (5), we do not try
to explain the cross-sectional variations of stock returns by
considering the empirical factors that are identified in the
literature like market, value, growth, small or large. This
is because we want to avoid using spurious empirical risk
factors that suffer from specification and estimation errors
and that typically have a high degree of multi-collinearity.
When multi-collinearity exists, there are various pitfalls that
can be exacerbated when estimating betas of a stock in a
multi-factor regression. These pitfalls are that the estimated
regression coefficient of any one variable depends on which
other predictors are included in the model; the estimated
regression coefficients become less precise as more predic-
tors are added to the model; the marginal contribution of any
one predictor variable to reducing the error sum of squares
depends on which other predictors are already in the model;
and the hypothesis tests on coefficients may yield different
conclusions depending on which predictors are in the model.

To give more insight into this last point, table 1 presents the
correlations between the weekly returns of eight MSCI factor
investing/smart beta European Equity indexes over the period
2001–2018. The correlations between these long-only factors
are high and can be explained by the existence of a significant
market component. Indeed the correlation between each of the
seven non-market factors individually and the market index
averages 93%. A simple solution for dealing with factor cor-
relations is to remove the market component from the other
factors. However, the issue of factor dependencies remains
even if the common market component is removed. To illus-
trate this point, table 2 displays the correlations between the
returns on the MSCI factors cleaned of the market component.
This cleaning is done by extracting the market component and
calculating the excess returns over the market index adjusted
for the beta from each factor. We observe that while the cor-
relations decrease on average, some of the investable factors
are still highly correlated, particularly the momentum (MOM)
and the minimum volatility (MV) factors, which have a corre-
lation of 91% over our sample.† Note that this stylised fact is
not specific to our sample, as we observe equally high correla-
tions when using data over a longer period, though the factors
involved are different.

Moving from the long-only MSCI factors to the long-short
Fama-French factors does not solve the dependence prob-
lem between factors, as table 3 illustrates. The table reports
the correlations of the weekly returns on the five Fama and
French (2015) European Factors for the period from 2001
to 2018. The SMB (Small Minus Big) factor in this table is
the average return on the small stock portfolios minus the
average return on the big stock portfolios. The HML (High

† Statistical tests show that many of the correlations are statistically
different from zero.
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Table 1. Correlations of the weekly returns of factor investing/smart beta European equity indexes, 2001–2018.

Correlations M SC LC V G Q MOM MV

Market (M) 100%
Small Capitalisations (SC) 90% 100%
Large Capitalisations (LC) 100% 88% 100%
Value (V) 99% 89% 98% 100%
Growth (G) 98% 88% 98% 93% 100%
Quality (Q) 94% 83% 94% 90% 96% 100%
Momentum (Mom) 90% 84% 89% 85% 91% 92% 100%
Minimum Volatility (MV) 91% 86% 91% 87% 93% 90% 98% 100%

Source: Bloomberg, Datastream, weekly data in EUR from 5 January 2001 to 25 May 2018. Computations by the authors. The European
equity indexes are the MSCI Europe Total Return (M), MSCI Europe Small Capitalisation Total Return (SC), MSCI Europe Large Capitali-
sation Total Return (LC), MSCI Europe Value Total Return (V), MSCI Europe Growth Total Return (G), MSCI Europe Quality Total Return
(Q), MSCI Europe Momentum Total Return (MOM), and the MSCI Europe Minimum Volatility Total Return (MV).

Table 2. Weekly correlations of factor investing/smart beta European equity indexes (adjusted for the market beta): 2001–2018.

Correlations M SC LC V G Q MOM MV

Market (M) 100%
Small Capitalisations (SC) 0% 100%
Large Capitalisations (LC) 0% −76% 100%
Value (V) 0% −2% 8% 100%
Growth (G) 0% 1% −8% −100% 100%
Quality (Q) 0% −13% 6% −50% 51% 100%
Momentum (Mom) 0% 18% −23% −40% 38% 49% 100%
Minimum Volatility (MV) 0% 21% −26% −47% 45% 30% 91% 100%

Source: Bloomberg, Datastream, weekly data in EUR from 5 January 2001 to 25 May 2018. Computations by the authors. The European
equity indexes are the MSCI Europe Total Return (M), MSCI Europe Small Capitalisation Total Return (SC), MSCI Europe Large Capitali-
sation Total Return (LC), MSCI Europe Value Total Return (V), MSCI Europe Growth Total Return (G), MSCI Europe Quality Total Return
(Q), MSCI Europe Momentum Total Return (MOM), and the MSCI Europe Minimum Volatility Total Return (MV). The Small Capitalisa-
tion, Large Capitalisation, Value, Growth, Momentum, Quality and Minimum Volatility factor returns are the excess returns over the market
index (adjusted for beta).

Table 3. Correlations of weekly returns of the five Fama-French
European factors, 2001–2018.

Correlations Market SMB HML RMW CMA

Market 100%
SMB −66% 100%
HML 13% −6% 100%
RMW −10% 3% −50% 100%
CMA −30% 16% 38% −18% 100%

Source: Fama-French European five-factor model, weekly data
from 5 January 2001 to 25 May 2018. Computations by the
authors.

Minus Low) factor is the average return on the value portfo-
lios minus the average return on the growth portfolios. The
RMW (Robust Minus Weak) factor is the average return on
the robust operating profitability portfolios minus the aver-
age return on the weak operating profitability portfolios. The
CMA (Conservative Minus Aggressive) factor is the aver-
age return on the conservative investment portfolios minus
the average return on the aggressive investment portfolios.
The results show that the correlations between the market and
the other Fama-French factors, and between the individual
Fama-French factors are relatively low. Nevertheless, these
factors are not completely orthogonal, since some correlations
appear high in absolute terms and are statistically significant,

especially the correlation of −66% between the market and
SMB factors, and that of −50% between the RMW and HML
factors.

Since latent factors extracted using statistical methods for
dimension reduction are by construction orthogonal and do
not suffer from this drawback, we consider the m factors in (5)
as unobservable, and subsequently propose a methodology for
estimating these factors along with our optimisation inputs
�S in (6) and α in (7). We begin by presenting the method
for estimating the optimal number m of factors in our factor
representation. This issue is crucial as accurate estimations of
both inputs require a correct specification of the factor model,
which depends heavily on m.

3. Estimating the latent factor model by sparse principal
component analysis

This section presents the methodology used to estimate the
latent factor model in (5). The first part of the section looks
at estimating the optimal number m of latent factors that
drive the cross-sectional variations of the returns on stocks.
Taking this estimate, the second part describes the Sparse
Principal Component Analysis (SPCA), the machine learning
methodology we estimate the latent factor model with, which
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provides the main inputs for the optimisation programme
in (1).

3.1. Estimating the optimal number of latent factors

The literature has discussed widely how to infer the num-
ber of significant factors in approximate latent factor models
(Stock and Watson 1999, Connor and Korajczyk 1993, Bai
and Ng 2002, etc.). Bai and Ng (2002) developed statis-
tics of the information criteria type to estimate the number
of latent factors. Their statistics are a compromise between
the average variance of idiosyncratic returns and the num-
ber of factors, and so they share some similarities with the
Akaike or Bayesian information criteria (AIC, BIC) that are
usually mobilised for model selection in regression models.
More recently, Ahn and Horenstein (2013) introduced two
eigenvalue ratio statistics that attain their maximal values at
an unknown number of latent factors. The rationale of these
statistics arises because the leading eigenvalues of the covari-
ance matrix grow without bounds as the number of stocks
increases, while the remaining values are bounded.†

As already stressed, we use the approximate latent factor
model of Bai and Ng (2002) as it is simple to understand and
is not inferior to the other methods in our context of a fac-
tor model for stock returns. We may rewrite the factor model
from (5) as follows

R = F
′ + E, (8)

where R is the (T , N) matrix of returns, F is the (T , m) matrix
of returns to latent factors, 
 is the (N , m) matrix of load-
ings, and E is the matrix of residual returns with the dimension
(T , N).

We denote as V the (m, m) diagonal matrix with the m
largest eigenvalues of RR′ as elements. F̃ is the principal com-
ponent estimate of F under the normalisation T−1F ′F = Im,
with Im as the identity matrix of dimension m. Then the ele-
ments of F̃ are those of the eigenvector matrix associated with
the m largest eigenvalues of the matrix RR′, multiplied by

√
T .

The estimate of the factor loadings matrix 
 is 
̃ = R′F̃/T .
The estimated matrix (T , N) of residual returns Ẽ with the
elements ẽit, i = 1, . . . , N , t = 1, . . . , T thus corresponds to

Ẽ = R − F̃
̃′. (9)

Under this framework, Bai and Ng (2002) propose that m be
estimated using statistics like information criteria. The idea is
to find a balance between residual variance, which diminishes
mechanically with the number of factors, and the complexity
of the model that is increasing in the number of factors. We
favour the following version of these statistics‡

IC (k) = ln(V (k, F̃(k)))+ k

(
N + T

NT

)
ln(C2

TN ), (10)

† For other references in this literature, see Lewbel (1991), Connor
and Korajczyk (1993), Donald (1997), and Onatski (2010).
‡ The results available from the authors upon request show that a
proposed investment strategy based on the other information crite-
ria in Bai and Ng (2002) are less economically valuable. This is
because they lead to optimal portfolios with lower realised alphas
on an annual basis.

where V (k, F̃(k)) is the average residual variance across stocks
and time when the number of factors is set to k,

V (k, F̃(k)) = 1

TN

N∑
i=1

T∑
t=1

ẽ2
it, (11)

and CTN = min{√N ,
√

T}. The estimated value m̂ of the num-
ber of latent factors m corresponds to the value of k that
minimises the information criterion IC(k), so

m̂ = arg min
k≤kmax

IC (k) , (12)

with kmax as the maximum number of factors, which we set to
50 in the empirical section. Under some regularity conditions,
Bai and Ng (2002) show that Pr(m̂ → m) → 1, as T , N → ∞.

An illustration of this estimation procedure is given below,
using the daily returns of all the stocks in the STOXX 600
universe over the period from November 2001 to May 2018.
At the end of each month, we use the most recent one-year
data (260 observations) for all the stocks in the capitalisation
universe and run the methodology described above to esti-
mate the number of latent factors m̂. This process is iterated
by repeatedly moving the estimation window one month for-
ward, taking in the data for a new month and dropping the data
for the earliest month, until the last observation is reached.

Figure 1 gives the time series dynamics of the number of
estimated latent factors throughout the rolling-window pro-
cedure, with crisis periods highlighted. The crisis periods are
the dot-com bubble financial crisis from September 2000 to
March 2003, the global financial crisis from June 2007 to
March 2009, the European sovereign debt crisis from April
2011 to June 2012, and the fear of a hard landing for China
from June 2015 to June 2016. The average number of esti-
mated latent factors over the whole sample is four. We observe
a substantial variation over time, with a clear-cut shape that
corresponds to a significant increase at the beginning of cri-
sis periods, and a decrease at the exit from them. The most
important sharp increase occurred during the global financial
crisis, when the number of latent factors extracted jumped
from three to six significant factors in the two months from 4
September 2008 to 3 November 2008. This dynamic corrob-
orates the results in Calomiris et al. (2012), who studied the
sensitivities of stock returns to factors in crisis periods. They
isolate three factors that explain the cross-sectional variation
of stock returns during the 2007–2008 global financial cri-
sis, looking beyond the usual factors that are associated with
stock returns. These factors, which they called ‘crisis shocks’,
measure three market or economic states, which are a collapse
of global trade, a contraction of the credit supply, and down-
wards pressure on the equity of firms because of selling. Most
importantly, they show that these factors are not in play in
various placebo samples that correspond to non-crisis peri-
ods. This then implies that the number of factors increases in
crisis periods.

It is worth stressing that this increase in the number of fac-
tors in a crisis period is also observed for the other information
criteria in Bai and Ng (2002), and in the method for estimating
the number of factors in Ahn and Horenstein (2013). At first
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Figure 1. Dynamics of the estimated number of latent factors. Source: Bloomberg, daily data from 30 November 2001 to 28 May 2018.
Computations by the authors. The four regions highlighted correspond respectively to the dot-com crisis period from 29 September 2000 to
31 March 2003, the global financial crisis period from 29 June 2007 to 31 March 2009, the European sovereign debt crisis from 29 April
2011 to 29 June 2012, and the fear of a hard landing for China from June 2015 to June 2016.

glance this result might seem to contradict the empirical reg-
ularity that correlations increase in times of crisis. However,
this regularity stems rather from the increase in the explana-
tory power of the first factor, notably the market, relative to
the other factors in times of crisis, and is not incompatible
with an increase in the number of factors in these periods.
Figure 2 represents the relative explanatory power of the sig-
nificant alternative factors, as measured by the ratio of the
sum of the variances or eigenvalues of these factors over the
variance of the first, market, factor. This figure shows that
this power decreases in crisis periods, leading to the conclu-
sion that the relative part of the variance of the market factor
increases significantly in these periods.

3.2. Description of the sparse principal component analysis

The success of the investment strategy that we develop in this
paper is based on estimating the alphas and betas of stocks
efficiently. This section describes the Sparse Principal Com-
ponent Analysis (SPCA) methodology that we use to estimate
this set of inputs for our optimisation programme. Histori-
cally, this method aims to alleviate one of the main pitfalls
of the traditional PCA, which is that the factors are hard to
interpret. In PCA, the loadings or exposures to factors are
non-zero, with the consequence that each factor is a linear
combination of all the input variables. This makes it harder
to interpret the factors extracted.

To achieve interpretability beyond data representation,
SPCA sets some of the loadings, and hence the number of
input variables that contribute to the variance of each factor,
to zero. This can be done in an ad hoc way by choosing a
threshold value and zeroing all the small loadings with abso-
lute values lower than the threshold, but this approach has
been criticised in the literature (Cadima and Jolliffe 1995).
More efficient methods (Jolliffe et al. 2003, Zou et al. 2006,

etc.) have been proposed for introducing sparsity to the vector
or matrix of loadings through penalisation methods such as
the Lasso (least absolute shrinkage and selection operator) of
Tibshirani (1996) or the Elastic Net of Zou and Hastie (2005).
These introduce a bound for the sum of the absolute values of
the loadings on each factor, forcing some of them to become
zero.†

In our context of estimating a latent factor model, SPCA
has more virtues than just interpretability. First, by setting
some of the loadings to exactly zero, it helps reduce estima-
tion error. Indeed it is small loadings, or small exposures of
stocks to latent factors, that are the most subject to irrelevant
variability over time, because they correspond to statistical
noise. Sparsity thus introduces stability in the loadings of a
stock, which are its betas, and consequently in its alpha. Sec-
ond, it makes sense to hypothesise that not all stocks are
exposed to all factors, and therefore that only a certain set of
stocks contributes to explaining the variability of each given
factor. So if one of the latent factors extracted has a high level
of correlation with, say, the small capitalisation factor as an
empirical factor, it is reasonable to expect that stocks with
large capitalisation will not load on this factor.

Here we use the SPCA methodology of Wu and
Chen (2016), which is well suited for large dimensional
problems. This method is introduced by the authors as an
alternative to the SPCA approach in Zou et al. (2006). To
describe the approach, we may consider once again our latent

† There are many variants of the Sparse PCA in the literature. See
for example the SPCA method of Zou et al. (2006), the direct SPCA
approach in d’Aspremont et al. (2007), the branch and bound method
in Farcomeni (2009), the GPower method of Journée et al. (2010),
the iterative elimination algorithm in Wang and Wu (2012), or the
thresholding approach in Wu and Chen (2016). For a review, see
Feng et al. (2016).



8 C. Boucher et al.

Figure 2. Relative explanatory power of significant alternative factors. Source: Bloomberg, daily data from 30 November 2001 to 28 May
2018. Computations by the authors. The relative explanatory power of the significant alternative factors is computed as the ratio of the sum
of the variances of these factors over the variance of the first, market, factor. The four regions highlighted correspond respectively to the
dot-com crisis period from 29 September 2000 to 31 March 2003, the global financial crisis period from 29 June 2007 to 31 March 2009, the
European sovereign debt crisis from 29 April 2011 to 29 June 2012, and the fear of a hard landing for China from June 2015 to June 2016.

factor model given by

R = F
′ + E, (13)

where R is again the matrix (T , N) of returns on stocks, F
is the matrix (T , m̂) with columns given by the T returns of
each latent factor, while m̂ is the number of optimal factors
obtained using the information criterion (see equations (10)–
(12)). The matrix 
 is of dimension (N , m̂) with the rows
containing the betas or exposures of each of the N stocks to
the m̂ factors, and E is the matrix (T , N) of idiosyncratic or
residual returns.

Given that this specification is based on the optimal number
of latent factors, the traditional PCA methodology can be used
to get the estimate 
̂pca from the singular value decomposition
of the matrix of returns R, with 
̂pca corresponding to the first
m̂ columns of the matrix V, with

R = U�V ′, (14)

where the orthogonal matrices U and V are of dimensions
(T , N) and (N , N) respectively, and � is a diagonal matrix
of dimension (N , N). As shown by Zou et al. (2006), the
traditional PCA estimate of 
 as described above can be
recast in a linear ridge regression framework. To do this,
let A = [a1, . . . , am̂] and B = [b1, . . . , bm̂] be the matrices of
dimension (N , m̂). For any ψ > 0, consider the following
constrained ridge regression

(̂A, B̂) = arg min
(A,B)

m̂∑
j=1

∥∥Raj − Rbj

∥∥2
2 + ψ

∥∥bj

∥∥2
2 , u.c.A′A = Im̂,

(15)
where R is the matrix (T , N) of the stock’s returns, ψ > 0 is
the ridge parameter, and Im̂ is the identity matrix of dimen-
sion m̂. As shown by Zou et al. (2006), the estimated matrix

B̂ = [̂b1, . . . , b̂m̂] is equal up to some normalisations to the
estimated matrix 
̂pca = [̂λ1,pca, . . . , λ̂m̂,pca] from the PCA, so

λ̂j,pca = b̂j∥∥̂bj

∥∥
2

, j = 1, . . . , m̂. (16)

Following from this result, Wu and Chen (2016) add a thresh-
olding constraint on this programme to obtain the sparse
loadings of the stock, yielding⎧⎨⎩(̃A, B̃) = arg min

(A,B)

∑m̂
j=1 ‖Raj − Rbj‖2

2 + ψ‖bj‖2
2

u.c. A′A = Im̂ B(i, j) = 0 if G(i, j) = 0,
, (17)

where G(i, j) is a sparse regularisation matrix with dimen-
sions (N , m̂). The choice of the matrix G is crucial in this
framework as it conditions the level of sparsity for the esti-
mated loadings. Here we follow the suggestion of estimating
G from a decision matrix based on the matrix of correlation
of the stock’s returns. The underlying idea is that a stock with
a large variance should load on a significant factor, and the
other stocks that are highly correlated with this benchmark
stock should also load on this factor, and those that are less
correlated should not.†

An equivalent form of the constrained penalised regres-
sion (17) is given by the authors. By letting Dj be the diagonal
matrix with Dj(i, i) = G(i, j), they show that (17) does indeed
correspond to a constrained ridge regression

(̃A, B̃) = arg min
(A,B)

m̂∑
j=1

∥∥Raj − RDjbj

∥∥2
2 + ψ

∥∥bj

∥∥2
2

u.c. A′A = Im̂. (18)

† See the reference for more details on this issue.
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with the solutions

b̃j = (
DjR

′RDj + ψIN
)−1

DjR
′R̃aj. (19)

The connection to the hard-thresholding rule arises in a large
dimensional setting by letting ψ → ∞, with (19) becoming

b̃j = DjR
′R̃aj, (20)

and so the sparse loadings are defined as

λ̃j,spca = b̃j∥∥̃bj

∥∥
2

, j = 1, . . . , m̂. (21)

Because in (20) b̃j depends on ãj, Wu and Chen (2016) pro-
poses an iterative algorithm that provides solutions to (17)
or equivalently (18) by solving for B with A kept fixed, or
for A with B fixed.† The full SPCA algorithm of Wu and
Chen (2016) is displayed in Appendix A.

With the estimated matrix (N , m̂) of sparse loadings

̃spca = (̃λ1,spca, . . . , λ̃m̂,spca), the matrix (T , m̂) of the esti-
mated factors is given by

F̃spca = R
̃spca. (22)

An empirical view of the estimated factors obtained with the
SPCA methodology and their link with a-priori factors in the
academic literature is given in Table B1 in Appendix B, which
presents the a-priori factors for each year that are most corre-
lated with the estimated latent factors (best correlated factor
with the fitted latent factor for each year). The estimated latent
factors are presented in each column and the absolute value of
the correlation coefficient is presented below the name of the
a-priori factor. We considered a list of 49 potential a-priori
factors available at a daily frequency, from oil price returns
and equity sector returns to credit, term and sovereign spreads,
implied volatilities, gold price returns and returns on typical
indexes. The first point to note is that the main latent factor
appears each year to be perfectly correlated with the market
portfolio, which is the MSCI Europe index. The second is that
we observe an instability in identifying the other latent factors
since the most correlated a-priori factors change across the
years. Moreover, the other latent factors present weak corre-
lations with a-priori factors in most of the cases. These results
explain why factor identification or timing is very difficult,
and they justify our approach of betting on alpha rather than
on these alternative risk premiums that were highlighted in the
empirical literature on asset pricing.

Note that the degree of sparsity of each factor estimated is
displayed in Table B2 in Appendix B. For each year and fac-
tor, it corresponds to the proportion of the loadings of stocks
that have estimated betas or exposures equal to zero. We
observe that the degree of sparsity evolves over time and there
is a lot of variation across factors. Interestingly, the degree of
sparsity of the first factor is always equal to zero, though this

† Note that for B fixed, A is obtained via the reduced rank Pro-
crustes rotation. Formally, A = ŨṼ ′ with Ũ and Ṽ as the orthogonal
matrices from the singular value decomposition of R′RB, so R′RB =
Ũ�̃Ṽ ′. For more discussion, see Zou et al. (2006).

result is expected as the first identified factor is nothing but the
market. Overall, the degree of sparsity for each year decreases
with the explanatory power of the factor. This means that the
less a factor explains the variability of the data, the fewer
stocks are exposed to it.

Lastly, let us note that with 
̃spca = (̃λ1,spca, . . . , λ̃m̂,spca),
the estimate of the vector α = (α1, . . . ,αN )

′ of length N of
stock’s alphas is given by

α̃spca = ¯̃E = R̄ − ¯̃Fspca
̃
′
spca, (23)

where ¯̃E, R̄ and ¯̃Fspca are the sample means of Ẽ, R and
F̃spca, respectively. The feasible version of our Smart Alpha
optimisation programme in (1) becomes⎧⎨⎩ω̃ = arg min

ω

ω′ �̃S,spcaω

u.c. ω′α̃spca ≥ ε,ω ≥ 0,ω ≤ ω,ω′e = 1,
(24)

where �̃S,spca is the systematic covariance matrix given by
�̃S,spca = 
̃spca�̃F,spca
̃

′
spca, with �̃F,spca as the covariance

matrix of the m̂ factors.
Note that for our optimisation programme in (24), the

objective function is convex, which ensures that there is a
unique global solution as soon as the systematic covariance
matrix �̃S,spca is positive-definite. Moreover, even in the oppo-
site case, the use of the constraints on the weights makes it
possible to obtain a global solution. Indeed Jagannathan and
Ma (2003) demonstrated that using the positivity constraint on
the weights is equivalent to regularising the covariance matrix
�̃S,spca in the quadratic form of the objective function. In prac-
tice, for the first optimisation of our backtesting exercise, we
use the equally weighted portfolio as the initial solution, and
for the following optimisations we use the portfolio held at
the time of the optimisation.

4. The Smart Alpha and competing portfolios:
comparison of performance

This section evaluates the Smart Alpha portfolio strategy
empirically looking at the European equity market. It com-
pares the performance of the Smart Alpha portfolio with those
of European factor investing indexes and some competing
smart beta portfolios. We start by describing the database and
the methodology used for the evaluation, and then we analyse
the performance profiles of the strategies.

We consider the European stock market here because it
has valuable characteristics in its size, liquidity, diversity of
market conditions, and representativeness. Moreover it offers
a significant regional diversification through different stock
exchanges that operate independently, as 17 countries are rep-
resented within the STOXX 600 index, and so also through
multiple currencies and then central banks that may drive the
risks and returns of stocks. That means this market provides
fertile ground for active strategies that try to capitalise on the
alphas of stocks. The STOXX 600 serves as a benchmark for
numerous actively managed funds and it underlies a variety of
financial products.



10 C. Boucher et al.

We could equally well have used the US stock market for
our backtesting exercise but we chose not to because over
recent years, the US stock market has been dominated by just
a few individual stocks from the technology industries. Stocks
of the five biggest companies (Alphabet, Apple, Facebook,
Amazon and Microsoft), known collectively as the GAFAM
stocks, have been one of the main drivers of the entire US
stock market for almost a decade. At 24.0%, their index
weight represents nearly a quarter of the S&P 500 index as
at 31 August 2020. Under these conditions, the results of an
active stock-picking strategy will be very sensitive to the over
or under-weighting of these few stocks.

Last but not least, the European market has experienced
more episodes of financial disturbance than the United States
market, with the euro area debt crisis from 2010 to end
of 2012 and the Brexit crisis in 2016, which makes the
backtesting exercises more robust.

4.1. Data and the evaluation methodology

The database comes from Bloomberg and Datastream, and
includes the daily returns of all the constituents of the STOXX
600 index from 4 December 2000 to 28 May 2018. The
database contains N = 1278 stocks, which is all the stocks in
the composition of the STOXX 600 index since 4 December
2000, and T = 4561 daily observations. This database there-
fore takes account of survivorship bias, as it is not limited to
only those stocks that are in the capitalisation universe at the
end of the sample.

We use a rolling-window approach to this dataset to gener-
ate out-of-sample returns for the Smart Alpha portfolio. More
precisely, we use the n = 260 daily returns that precede the
date we set for the first optimisation of 30 November 2001 to
find the solution ω̃ for the optimisation programme in (24),
restricting the investment universe to only the 600 stocks in
the capitalisation universe at the optimisation date, and set-
ting the upper-bound ω to the value 2%, meaning there are
around 50 active stocks. This solution is implemented with
a delay of one day, and the ex-post or realised daily returns
for the strategy are recorded from the subsequent days with a
holding period of one month.

This process is iterated by repeatedly moving the estimation
window forward one month by including the data for a new
month and dropping the data for the earliest month, until the
last observation is reached. Traditional performance measures
are computed for the realised returns net of transaction costs,
with the proportional transaction cost set to 25 basis points
per transaction.

4.2. The Smart Alpha portfolio: comparison with factor
investing indexes and the BAB benchmark

Since our Smart Alpha portfolio strategy is by design orthog-
onal to factor investing, we compare its performances to
those of eight MSCI factor investing indexes, which are the
MSCI Europe Small Capitalisation Total Return (SC), the
MSCI Europe Large Capitalisation Total Return (LC), the
MSCI Europe Value Total Return (V), the MSCI Europe
Growth Total Return (G), the MSCI Europe Quality Total

Return (Q), the MSCI Europe Momentum Total Return
(MOM), the MSCI Europe Minimum Volatility Total Return
(MV), and the MSCI Europe Index (E). We also include
the BAB strategy in the comparison as it shares some sim-
ilarities with our strategy, as discussed in the introduction.
The related optimal portfolio is obtained by minimising the
exposures to the three Fama-French factors of market, size,
and value.

The realised or ex-post performances of the Smart Alpha
portfolio, the eight factor investing indexes, and the BAB
portfolio are displayed in table 4. For each strategy, the table
displays absolute performance measures given by the raw
return, the annualised average return, the annualised volatil-
ity, the Sharpe ratio and the maximum drawdown. Perfor-
mance measures relative to the STOXX 600 index and given
by beta, annualised residual risk, annualised alpha, annu-
alised average excess returns and the Appraisal ratio are also
displayed.

Observing the absolute performance measures except
volatility and maximum drawdown shows the best-performing
factor investing index to be the MSCI Europe Small Cap-
italisation Total Return (SC). This index takes the highest
values for the raw return at 410.99%, the annualised average
return at 10.36%, and the Sharpe ratio at 0.61. However, this
is beaten by our Smart Alpha portfolio (SA-SPCA), which
delivers higher values for these three evaluation criteria, pro-
ducing raw return of 584.01%, annualised average return of
12.33%, and a Sharpe ratio of 1.16. The Smart Alpha also
delivers the best performance for the risk measures given by
volatility and maximum drawdown. It has annualised volatil-
ity of 10.6% and maximum drawdown of −38.21%, which
are lower than the 14.39% for annualised volatility recorded
by the MSCI Europe Minimum Volatility Total Return and
the maximum drawdown of −39.75% of the MSCI Europe
Quality Total Return. The comparison with the BAB portfo-
lio shows that our strategy performs better in these absolute
metrics, except for volatility, which is of same order for both
strategies.

This outperformance seems consistent when the measures
of relative performance are considered. The annualised aver-
age excess return over the STOXX 600 index is 11.09%,
which is much higher than the values for the competing strate-
gies. Correcting the annualised average excess returns for the
exposure to the market, or beta, does not eliminate this out-
performance as the annualised alpha is instead 9.74%, which
is still high. It may be noted that the beta of the Smart Alpha
portfolio has the lowest value, which may partly explain its
resilience in crises, as shown by it having the lowest value for
maximum drawdown. This is also the case for the BAB port-
folio. Finally, the value of the Appraisal ratio is 1.58 for the
Smart Alpha portfolio, which is the highest value of any of
the strategies.

4.3. Smart Alpha portfolio: comparison with popular smart
beta portfolios

In this section, we compare the Smart Alpha portfolio with
three smart beta portfolios and the market portfolio (STOXX
600). The first smart beta portfolio is the popular minimum
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Table 4. Ex-post performances of the Smart Alpha portfolio, MSCI factor investing indexes and BAB portfolio.

SA-SPCA SC LC V G Q MOM MV E BAB

Raw Return (%) 584.01 410.99 106.41 104.54 137.67 249.22 351.04 196.74 123.21 347.18
Annualised Average Return (%) 12.33 10.36 4.48 4.42 5.37 7.85 9.53 6.80 4.98 9.47
Annualised Volatility (%) 10.60 16.89 19.77 21.41 18.04 16.80 17.58 14.39 19.38 10.56
Sharpe Ratio 1.16 0.61 0.23 0.21 0.30 0.47 0.54 0.47 0.25 0.89
Maximum Drawdown (%) −38.21 −65.44 −57.26 −64.78 −51.20 −39.75 −50.84 −50.50 −58.22 −43.01

Beta 0.45 0.78 1.02 1.09 0.91 0.82 0.82 0.72 1.00 0.44
Annualised Residual Risk (%) 6.14 7.47 1.58 3.62 3.45 5.49 7.64 3.76 0.75 6.32
Annualised Alpha (%) 9.74 6.41 −0.28 −0.47 0.92 3.71 5.49 2.99 0.23 7.01
Annualised Average Excess Return (%) 11.09 8.68 −0.53 −0.65 1.25 5.29 7.61 3.68 0.49 7.53
Appraisal Ratio 1.58 0.86 −0.17 −0.13 0.27 0.67 0.71 0.79 0.31 1.11

Source: Bloomberg, daily data from 3 December 2001 to 28 May 2018. Computations by the authors. SA-SPCA refers to our Smart Alpha
portfolio strategy based on the SPCA and the optimal number of factors, SC the MSCI Europe Small Capitalisation Total Return, LC the
MSCI Europe Large Capitalisation Total Return, V the MSCI Europe Value Total Return, G the MSCI Europe Growth Total Return, Q the
MSCI Europe Quality Total Return, MOM, the MSCI Europe Momentum Total Return, MV the MSCI Europe Minimum Volatility Total
Return, and E the MSCI Europe Index. BAB is the Betting-Against-Beta portfolio strategy. The relative statistics (beta, residual risk, alpha,
average excess returns, Appraisal Ratio) are computed with the STOXX 600 as benchmark.

Table 5. Ex-post performances of the Smart Alpha and popular Smart Beta strategies.

SA-SPCA RP EW MV-OPT Benchmark

Raw Return (%) 584.01 257.90 226.40 368.90 114.79
Annualised Average Return (%) 12.33 8.01 7.41 9.79 4.73
Annualised Volatility (%) 10.60 17.39 19.07 9.94 19.35
Sharpe Ratio 1.16 0.46 0.39 0.98 0.24
Maximum Drawdown (%) −38.21 −60.95 −63.87 −41.15 −58.69

Beta 0.45 0.87 0.96 0.42
Annualised Residual Risk (%) 6.14 4.15 4.63 5.61
Annualised Alpha (%) 9.74 3.62 2.80 7.34
Annualised Average Excess Return (%) 11.09 5.52 4.64 7.94
Appraisal Ratio 1.58 0.87 0.60 1.31

Source: Bloomberg, daily data from 3 December 2001 to 28 May 2018. Computations by the authors. SA-SPCA refers to our Smart Alpha
portfolio strategy based on the Sparse PCA and the optimal number of factors, RP the risk parity portfolio, EW the equally weighted portfolio,
MV-OPT the optimised minimum volatility portfolio, and Benchmark the STOXX 600 Index.

volatility portfolio, which is obtained as

⎧⎨⎩ω̃ = arg min
ω

ω′ �̃ω

u.c. ω ≥ 0,ω ≤ ω, ω′e = 1,
(25)

with �̃ as an estimate of the covariance matrix of stock
returns. We do not consider the sample covariance matrix,
which is not well conditioned in our case, because the number
of stocks (N = 600) is higher than the length of the sample
(n = 260). We instead use the shrinkage covariance matrix
estimate in Ledoit and Wolf (2003). The goal of this is to
exploit the usual bias-variance trade-off by reducing the vari-
ance or instability of the sample covariance matrix, at the cost
of a small bias.

The second smart beta alternative is the risk parity port-
folio. This smart beta portfolio allocates wealth on a risk-
weighted basis to avoid the pitfalls of the traditional capi-
talisation weighting scheme. The ultimate goal is to equalise
each stock’s total contribution to the overall risk in order to
increase portfolio diversification. We consider here the sim-
ple but effective risk parity portfolio, with the weight ω̃i on

each stock i equal to

ω̃i =
1
σ̃i∑N

i=1
1
σ̃i

, (26)

where σ̃i is the sample standard deviation for the returns of
stock i. Lastly, we consider the equally weighted portfolio as
a third alternative.

Table 5 displays the performance metrics of the Smart
Alpha portfolio, the three competing smart beta portfolios,
and the STOXX 600 index as the benchmark. Overall, the
Smart Alpha portfolio has the best performances for raw
return, annualised average return, annualised average excess
return, annualised alpha and Appraisal ratio. Looking at the
risk metrics displayed, we observe that the annualised volatil-
ity of the Smart Alpha portfolio is higher than that of the opti-
mised minimum volatility portfolio (MV-OPT). This result is
to be expected and naturally arises because our portfolio only
minimises the systematic part of the volatility, while the min-
imum volatility portfolio minimises the total volatility, both
systematic and specific. It can also be linked to the alpha
constraint underlying our strategy that tightens the region in
which the minimum systematic risk portfolio is sought. It
should be noted that the Smart Alpha portfolio is better for
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Table 6. SPCA versus PCA: performance comparison.

SA-SPCA SA-PCA

Raw Return (%) 584.01 466.36
Annualised Average Return (%) 12.33 11.05
Annualised Volatility (%) 10.60 10.63
Sharpe Ratio 1.16 1.04
Monthly Turnover (%) 20.56 22.15
Maximum Drawdown (%) −38.21 −38.83

Beta 0.45 0.46
Annualised Residual Risk (%) 6.14 5.90
Annualised Alpha (%) 9.74 8.42
Annualised Average Excess Return (%) 11.09 9.54
Appraisal Ratio 1.58 1.42

Source: Bloomberg, daily data from 3 December 2001 to 28 May
2018. Computations by the authors. SA-SPCA refers to our Smart
Alpha portfolio strategy based on the Sparse PCA and the optimal
number of factors, SA-PCA is its analogue based on the traditional
non-sparse PCA.

maximum drawdown than the minimum variance portfolio.
The explanation for this result is that alpha is about return
and dampens the severity of losses. Lastly, our portfolio using
an active strategy has the highest value for the annualised
residual risk.

4.4. The Smart Alpha portfolio: does sparsity matter?

We may recall that the Smart Alpha portfolio is based on
a machine learning method, the SPCA version of Wu and
Chen (2016, see Section 3.2 above), that allows the sparse
exposures of a stock and then its alpha to be estimated. In
this section we evaluate the benefit of using SPCA rather than
the traditional PCA. To do this, we consider the Smart Alpha
portfolio optimisation programme in (24), with the systematic
covariance and the alphas of the stocks estimated from a stan-
dard PCA with the optimal number of latent factors instead of
the Sparse version of PCA, which is⎧⎨⎩ω̃ = arg min

ω

ω′ �̃S,pcaω

u.c. ω′α̃pca ≥ ε,ω ≥ 0,ω ≤ ω,ω′e = 1.
(27)

Comparing the performances of the two strategies in (24)
and (27) will help in evaluating the relevance of estimating
the systematic covariance matrix and the alphas, which are
the two building blocks of the Smart Alpha strategy, using the
sparse loadings of the stocks. The results of the backtesting
exercise are displayed in table 6.

The results in table 6 show the absolute performance or raw
return of the Smart Alpha portfolio based on the SPCA to be
much higher than that of its equivalent based on the tradi-
tional PCA. Over the entire period, the performance of the
SPCA Smart Alpha portfolio is equal to 584.01%, while that
of the PCA version is 466.36% for instance. This dominance
also holds when the focus is on the annualised average return,
the annualised average excess return, the annualised alpha, the
Appraisal ratio, or to a lesser extent the annualised volatility
and the maximum drawdown.

It is worth mentioning that sparsity has an interesting effect
on portfolio turnover. While the turnover of the SPCA Smart
Alpha portfolio is equal to 20.56, the value of the PCA equiva-
lent is higher at 22.15. This result is expected because sparsity
removes noise from the estimation of the stock’s loadings by
setting small values that are non informative and erratic over
time to exactly zero. This de-noising process has the advan-
tage of producing stable exposures and alphas for the stocks,
and so there is less portfolio rebalancing and lower transaction
costs. Though this difference may seem small at first glance,
it should be noted that the figures displayed relate on average
to a monthly rebalancing, and that over a long period like that
of our backtesting, the gain in terms of transaction costs may
be high.

5. Economic value of Smart Alpha strategy and
sensitivity analysis

5.1. Economic value

To calculate the value of the economic gains associated with
our Smart Alpha strategy, this section uses the utility-based
measure developed in Fleming et al. (2001, 2002). It is based
on quadratic utility as an approximation of the true utility
function of the investor and assumes that relative risk aversion
(γ ) is constant. Under these conditions, the average realised
utility for a given portfolio (Up) is

Up(·) = W0

[
T−1∑
t=0

Rp,t+1 − γ

2(1 + γ )
R2

p,t+1

]
, (28)

where W0 is the initial wealth and Rp,t+1 = ω̃′
trt+1 are the

returns on the portfolio (p). To measure the value of switching

Table 7. Willingness-to-pay for different strategies versus the
Smart Alpha based on SPCA.

SA-PCA SC LC V G Q MOM

γ = 1 1.13 0.42 6.56 6.38 5.80 3.86 2.14
γ = 3 1.10 0.97 6.68 6.63 5.88 3.78 2.24
γ = 5 1.10 1.17 6.72 6.72 5.90 3.75 2.28
γ = 10 1.09 1.35 6.76 6.80 5.93 3.73 2.31

MV E RP EW MV-OPT BAB

γ = 1 5.02 6.04 3.13 3.35 2.26 2.47
γ = 3 5.03 6.19 3.39 3.71 2.23 2.50
γ = 5 5.03 6.24 3.48 3.83 2.23 2.52
γ = 10 5.04 6.29 3.56 3.95 2.22 2.53

Source: Bloomberg, daily data from 3 December 2001 to 28 May
2018. Computations by the authors. SA-PCA refers to our Smart
Alpha portfolio strategy based on the traditional PCA, SC the MSCI
Europe Small Capitalisation Total Return, LC the MSCI Europe
Large Capitalisation Total Return, V the MSCI Europe Value Total
Return, G the MSCI Europe Growth Total Return, Q the MSCI
Europe Quality Total Return, MOM, the MSCI Europe Momen-
tum Total Return, MV the MSCI Europe Minimum Volatility Total
Return, E the MSCI Europe Index, RP the risk parity portfolio, EW
the equally weighted portfolio, MV-OPT the optimised minimum
volatility portfolio, and BAB the Betting-Against-Beta portfolio.
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Table 8. OLS regressions of the Smart Alpha strategy on the five Fama-French European factors.

# Model Intercept Market SMB HML RMW CMA R-squared

Panel A: Univariate OLS regressions

(1) 9.792% *** 0.447*** 0.602
(5.619) (30.918)

(2) 13.463%*** −0.279*** 0.134
(4.356) (−9.611)

(3) 12.852%*** 0.073** 0.005
(4.312) (2.379)

(4) 12.888%*** 0.020 0.000
(4.292) (0.687)

(5) 13.088%*** −0.0706* 0.005
(4.358) (−1.681)

Panel B: Multivariate OLS regressions

(6) 9.757%*** 0.450*** 0.008 0.602
(5.599) (28.353) (0.599)

(7) 9.311%*** 0.529*** 0.140*** −0.228*** 0.628
(5.581) (27.178) (5.883) (−6.159)

(8) 9.228%*** 0.506*** 0.068 −0.240*** 0.112*** 0.634
(5.564) (21.281) (1.610) (−7.564) (3.004)

(9) 9.200%*** 0.501*** 0.074* −0.195*** 0.151*** −0.088* 0.635
(5.563) (20.887) (1.943) (−4.143) (3.146) (−1.811)

Source: Bloomberg, Fama-French European five-factor model. Daily data from 3 December 2001 to 28 May 2018. Computations by the
authors. The Newey-West corrected t-statistic of each parameter is displayed in parentheses below the estimated parameter. The R̄2 is the
adjusted R2. The intercept is the annualised value of the estimated portfolio’s alpha. *, **, and *** denote traditional significance at the 10%,
5% and 1% levels respectively.

from a reference trading strategy to a candidate one, we then
equate their average realised utilities,

T−1∑
t=0

(R2,t+1 −�)− γ

2(1 + γ )
(R2,t+1 −�)2

=
T−1∑
t=0

R1,t+1 − γ

2(1 + γ )
R2

1,t+1, (29)

where R1, t+1 and R2,t+1 are the returns for the two strategies.
To equate the average utilities, we subtract a constant,�, from
each of the returns on the candidate strategy. This represents
the cost that the investor would be able to pay, say for per-
formance fees, while still having the same expected utility as
under the reference strategy.

Table 7 reports the annual fees in per cent that an investor
with a quadratic utility function and constant relative risk
aversion equal to γ would be willing to pay to switch from the
SPCA Smart Alpha strategy to each of the alternative compet-
itive strategies considered in the sections above. The fees in
the table are determined empirically as the value that equalises
the ex-post utility for the two different portfolios calculated
from annual returns. The results show that all the values are
positive, meaning that a rational investor switching from the
SPCA Smart Alpha strategy to one of the alternative strategies
has to pay some positive performance cost. To switch from the
SPCA Smart Alpha strategy to its PCA analogue for instance,
a rational agent with a quadratic utility function and a rela-
tive risk aversion coefficient γ = 3 must pay a cost equivalent
to 1.10% per year over the full sample. It can be concluded
from the table that all the alternative competing portfolios are
inferior to the SPCA Smart Alpha portfolio.

5.2. Sensitivity analysis

In this last section, we analyse the sensitivity of the (SPCA)
Smart Alpha portfolio to the five long-short based Fama-
French (1993, 1996 and 2015) European factors.† The market
factor is the return in euros on the European value-weighted
market portfolio minus the US one month T-bill rate. The
SMB (Small Minus Big) factor is the average return on the
small stock portfolios minus the average return on the big
stock portfolios. The HML (High Minus Low) factor is the
average return on the value portfolios minus the average
return on the growth portfolios. The RMW (Robust Minus
Weak) factor is the average return on the robust operating
profitability portfolios minus the average return on the weak
operating profitability portfolios. The CMA (Conservative
Minus Aggressive) factor is the average return on the con-
servative investment portfolios minus the average return on
the aggressive investment portfolios.

To measure the sensitivity of the Smart Alpha strategy to
factors, we performed univariate and multivariate OLS regres-
sions on the five Fama-French European factors. Table 8
displays the results for the whole sample ranging from 3
December 2001 to 28 May 2018. In table 8, Panel A presents
the estimated coefficients of the univariate OLS regressions
and Panel B displays the estimated coefficients of the mul-
tivariate OLS regressions. We made a Newey-West correc-
tion (Newey and West 1987) for the inference to deal with
heteroskedasticity and autocorrelation.

† The Fama-French five factors are constructed using the six value-
weighted portfolios formed on size and book-to-market, the six
value-weighted portfolios formed on size and operating profitability,
and the six value-weighted portfolios formed on size and investment.
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In Panel A of table 8, except for Model 1 which exhibits
a moderately high R-squared, the other Fama-French fac-
tors (Model 2–Model 5) have weak explanatory powers with
adjusted R-squared near 0 for HML, RMW and CMA fac-
tors. We observe that the explanatory powers increase when
we move from Panel A to Panel B, but these increases are
marginal. Indeed, the adjusted R-squared reaches only 0.635
for the five Fama-French Factors regression (Model 9), while
the univariate model with the market factor has an adjusted
R-squared of 0.602.† This is the proof that the market factor
is the only factor that can explain the dynamics of the Smart
Alpha portfolio strategy, but even then only weakly. The
incremental value of the other four factors appears limited.

This last observation is reinforced when both the values
of the t-statistics and the estimated alphas are considered.
Indeed, results in Harvey et al. (2016) provide guidance about
inference in factorial regression analysis. These authors stress
the data mining problem arising from the many empirical
papers that try to explain the cross-section of expected returns.
They use a multiple testing approach to analyse the signif-
icance of a factor given the previous tests on other factors,
and they argue that a t-statistic with an absolute value that is
greater than 3, and so is above the usual 1% critical value of
the Student distribution, should be used instead for inference.
Following this route, we can observe that most of the esti-
mated coefficients in table 8 are significantly different from 0
with a t-statistic higher than 3.0, except for HML, RMW and
CMA in the univariate regressions. The estimated values for
the alphas meanwhile are always positive and significant for
all of the univariate and multivariate models in table 8. The
annualised alphas are between 9.311% and 13.463%.

All these results confirm that the sparse PCA methodology
used in conjunction with the estimation of the optimal num-
ber of factors from the information criterion provides accurate
estimates of the alpha of a stock and its exposures to latent
factors, and so leads to optimal portfolios that meet the idea
underlying the Smart Alpha strategy: reducing the exposures
to latent factors while generating alpha.

6. Conclusion

In this article, we propose an active investing approach to allo-
cating equity portfolios. The strategy consists of maximising
alpha, which is the expected return uncorrelated to various
systematic sources of risk, while minimising the exposures to
those same systematic risk factors. The core idea is to bet on
alpha rather than on alternative risk premiums in the way that
the factor investing approach does.

Methodologically, factors and the exposures and alphas
of the stocks are extracted through a latent factor model
estimated by Sparse Principal Component Analysis. In this
framework, timing the exact number of relevant factors is cru-
cial, and we achieve this by using the information criteria-like
statistics in Bai and Ng (2002).

† For comparison, the same exercise for the Risk Parity portfo-
lio considered above leads to an adjusted R-squared of 0.865 for
model 9.

The empirical results confirm the value of our framework.
The Smart Alpha portfolio has both lower risk and higher
returns, alpha, than the market cap-weighted index, popu-
lar MSCI factor investing indexes, the Betting-Against-Beta
strategy, and other heuristic or smart beta approaches such as
the naïve equally weighted portfolio, the risk parity portfolio
and the minimum variance portfolio. Economically, our strat-
egy also appears to perform best, because a rational investor
who switches from our strategy to one of the alternatives
has to pay a positive and significant performance cost. These
results disprove the current folklore in the asset management
industry about the death of alpha and the superiority of factor
investing.

Moreover, we evaluate the economic value of estimating
the exposures and alphas of the stocks using Sparse Principal
Component Analysis instead of the traditional Principal Com-
ponent Analysis, and we observe significant economic gains.
Lastly, attribution analyses show that our strategy delivers ex-
post returns that are not explained by the traditional empirical
factors. This result is in line with the philosophy underlying
the strategy of minimising the portfolio’s exposures to the
main sources of risk.

We may finish by noting that, because our framework is
general and not specific to the equity market, the Smart Alpha
portfolio methodology can be adapted to other asset classes
and also to portfolio managers.
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Appendix A. Sparse PCA algorithm

This Appendix presents the iterative SPCA algorithm of Wu and
Chen (2016). In our context, the algorithm solves for the constrained
penalised regression in (17) or equivalently (18) by alternately fixing
one of the arguments A or B, and solving in the dimension of the free
argument B or A. The normalised components b̃j, j = 1, . . . , m̂ of B̃
are the sparse loadings of the stocks, with m̂ as the number of factors.

• Step 1. Let A = [a1, . . . , am̂] start at V [:, 1 : m̂] with V as
the stock’s PCA loadings on the first m̂ principal com-
ponents, obtained from the singular value decomposition
(SVD) of R (see equation (14)).

• Step 2. Given a fixed A, apply the hard-thresholding rule
in (20) to get sparse loadings, for j = 1, . . . , m̂, with

b̃j = DjR
′R̃aj. (A1)

• Step 3. For a fixed B̃ = [̃b1, . . . , b̃m̂], compute the SVD
of X ′XB̃ = Ũ�̃Ṽ ′, then update A = ŨṼ ′.

• Step 4. Repeat Steps 2–3, until convergence.
• Setp 5. Get sparse PCA loadings via normalisation, with

̃spca = [̃λ1,spca, . . . , λ̂m̃,spca], and

λ̃j,spca = b̃j∥∥̃bj
∥∥

2

, j = 1, . . . , m̂. (A2)
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Appendix B. Additional table

Table B1. Latent and a-priori factor matching (absolute value of the correlation coefficients).

Number of latent factors 1 2 3 4 5

Calendar years
2001 Rm Sect_Media Sect_Travel

1.00 0.65 0.52
2002 Rm Sect_Tech Sect_Media Sect_Oil Sect_Health

1.00 0.44 0.40 0.32 0.29
2003 Rm LARGE Sect_Chem

1.00 0.58 0.28
2004 Rm Sect_Media

1.00 0.49
2005 Rm SMALL Sect_Basic

1.00 0.20 0.42
2006 Rm SMALL

1.00 0.75
2007 Rm Sect_Travel

1.00 0.51
2008 Rm LARGE Sect_Bks VALUE GROWTH

1.00 0.71 0.72 0.24 0.39
2009 Rm Sect_Bks SMALL Sect_Ins QUALITY

1.00 0.48 0.64 0.60 0.39
2010 Rm Sect_Bks VALUE SMALL Sect_Chem

1.00 0.52 0.69 0.29 0.36
2011 Rm Sect_Bks LARGE

1.00 0.76 0.58
2012 Rm Sect_Bks VALUE LARGE Sect_Ins

1.00 0.68 0.73 0.49 0.16
2013 Rm Sect_Travel VALUE

1.00 0.72 0.72
2014 Rm Sect_Bks Sect_Oil MOMENTUM

1.00 0.75 0.72 0.32
2015 Rm Sect_Oil VALUE QUALITY Sect_Bks

1.00 0.83 0.16 0.61 0.43
2016 Rm Sect_Basic Sect_Bks Sect_Travel QUALITY

1.00 0.87 0.78 0.75 0.56
2017 Rm Sect_Travel Sect_Tech Sect_Oil MINIMUM VARIANCE

1.00 0.16 0.66 0.47 0.58
2018 Rm Sect_Tech SMALL Sect_Bks

1.00 0.51 0.21 0.77

Source: Bloomberg, DataStream; daily data from 30 November 2001 to 28 May 2018. Computations by the authors. Rm: MSCI Europe;
VALUE: MSCI Europe Value; LARGE: MSCI Europe Large; SMALL: MSCI Europe Small; MOMENTUM: MSCI Europe Momentum;
QUALITY: MSCI Europe Quality; MINIMUM VARIANCE: MSCI Minimum Variance; Sect_Basic: DS Equity Basic Resources; Sect_Bks:
DS Equity Banks; Sect_Chem: DS Equity Chemistry; Sect_Oil: DS Equity Oil & Gas; Sect_Tech: DS Equity Technology; Sect_Travel: DS
Equity Travel & Leisures; Sect_Media: DS Media; Sect_Ins: DS Insurance; Sect_Health: DS Health.
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Table B2. Sparsity degree of estimated latent factors.

Number of latent factors 1 2 3 4 5

Calendar years
2001 Rm Sect_Media Sect_Travel

0 0.64 0.78
2002 Rm Sect_Tech Sect_Media Sect_Oil Sect_Health

0 0.77 0.82 0.89 0.89
2003 Rm LARGE Sect_Chem

0 0.71 0.84
2004 Rm Sect_Media

0 0.87
2005 Rm SMALL Sect_Basic

0 0.92 0.88
2006 Rm SMALL

0 0.82
2007 Rm Sect_Travel

0 0.71
2008 Rm LARGE Sect_Bks VALUE GROWTH

0 0.54 0.59 0.63 0.64
2009 Rm Sect_Bks SMALL Sect_Ins QUALITY

0 0.67 0.69 0.71 0.75
2010 Rm Sect_Bks VALUE SMALL Sect_Chem

0 0.66 0.67 0.83 0.90
2011 Rm Sect_Bks LARGE

0 0.74 0.91
2012 Rm Sect_Bks VALUE LARGE Sect_Ins

0 0.71 0.82 0.84 0.91
2013 Rm Sect_Travel VALUE

0 0.84 0.87
2014 Rm Sect_Bks Sect_Oil MOMENTUM

0 0.79 0.81 0.81
2015 Rm Sect_Oil VALUE QUALITY Sect_Bks

0 0.49 0.87 0.51 0.92
2016 Rm Sect_Basic Sect_Bks Sect_Travel QUALITY

0 0.51 0.53 0.46 0.75
2017 Rm Sect_Travel Sect_Tech Sect_Oil MINIMUM VARIANCE

0 0.86 0.82 0.87 0.91
2018 Rm Sect_Tech SMALL Sect_Bks

0 0.80 0.90 0.91

Source: Bloomberg, DataStream; daily data from 30 November 2001 to 28 May 2018. Computations by the authors. Rm: MSCI Europe;
VALUE: MSCI Europe Value; LARGE: MSCI Europe Large; SMALL: MSCI Europe Small; MOMENTUM: MSCI Europe Momentum;
QUALITY: MSCI Europe Quality; MINIMUM VARIANCE: MSCI Minimum Variance; Sect_Basic: DS Equity Basic Resources; Sect_Bks:
DS Equity Banks; Sect_Chem: DS Equity Chemistry; Sect_Oil: DS Equity Oil & Gas; Sect_Tech: DS Equity Technology; Sect_Travel: DS
Equity Travel & Leisures; Sect_Media: DS Media; Sect_Ins: DS Insurance; Sect_Health: DS Health.
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