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We study in this article the problem of model risk in VaR computations and document a
procedure for correcting the bias due to specification and estimation errors. This practical
method consists of “learning from model mistakes”, since it dynamically relies on an
adjustment of the VaR estimates – based on a back-testing framework – such as the
frequency of past VaR exceptions always matches the expected probability. We finally show
that integrating the model risk into the VaR computations implies a substantial minimum
correction to the order of 10–40% of VaR levels.

JEL classification: C14, C50, G11, G32.

I. INTRODUCTION

The recent worldwide financial crisis has dramatically revealed that risk manage-
ment pursued by financial institutions is far from optimal. This paper proposes to
illustrate an economic evaluation of the impact of model uncertainty on Value-at-
Risk estimates based on a back-testing framework.
The VaR are used in asset management policies as well as micro-prudential regu-
lations in both Banking (Basel II) and Insurance (Solvency II). This extreme risk
measure serves to fix the required capital (Pillar I of Basel II regulation) and to
monitor the risk by means of internal risk models (Pillar II of Basel II regulation).
Risk estimates are thus used to determine capital requirements and associated
capital costs of financial institutions, depending in part on the ex post quality of
the recent VaR forecasts.

Hence, the amendment to the initial Basel Accord (BCBS, 1996) was designed
to encourage and reward institutions for superior risk management systems. A
back-testing procedure, that compares actual returns with the corresponding VaR
forecasts, was introduced to assess the quality of the internal models. The objective
was to monitor the frequency of so-called “exceptions” when realized losses
exceed estimated VaR.

Therefore, appropriately constructed accurate risk measures, in particular those
robust to model risks, are of paramount practical importance. Methods for the
quantification of this type of risk are not nearly as well developed as methods
for measuring market risk given a model, and the view is widely held that better
methods to deal with model risk are essential to improve risk management.
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Table 1: Asymptotic Gaussian versus Small Sample Estimated Gaussian
Quantiles

Probability Levels Mean Est. VaR Perfect VaR Mean Bias Min Bias Max Bias

α = 95.00% −29.49% −29.49% .00% −7.93% 7.24%
α = 99.00% −41.88% −41.88% .00% −9.92% 9.17%
α = 99.50% −46.41% −46.41% .00% −12.45% 10.16%

Source: These statistics were computed with the results on 100,000 simulated series of
250 daily returns according to a specific realistic Gaussian DGP and using an annualized
Gaussian VaR. The columns represent, respectively, the average Estimated VaR with
estimation errors and the average-minimum-maximum of the adjustment term for all
samples. Per convention, a negative adjustment term indicates that the Estimated VaR
(negative return) should be more conservative (more negative).

Furthermore, the Basel III committee has recently proposed that financial in-
stitutions assess their own model risk (BCBS, 2009). However, the model risk,
whilst already studied in the case of specific price processes (e.g., Cont, 2006),
is not yet practically taken into account in the building of risk models by the
industry.1

But let us first grasp the intuition of our approach, in the simplest traditional
framework based on the normal Brownian motion paradigm. The following Table 1
provides an illustration of the estimation risk within the classical Gaussian case,
where, the asymptotic quantiles (simply assuming that returns are Gaussian) are
compared to the small finite sample ones, computed in 100,000 trials with 250
observations (as demanded by regulators) of a realistic simulation (based on esti-
mations of the first two realized moments of returns on the DJIA in USD, in the
period from the 1st January, 1900 to the 15th October, 2010). The perfect (asymp-
totic) VaR, the average estimated VaR as well as the average-minimum-maximum
of the errors (i.e., differences between asymptotic and estimated quantiles) are
therein presented for three levels of probability. In the worst cases, the mean and
volatility appear to be, respectively, severely over- and under-estimated within the
small sample. This precise situation corresponds to a realization of an occasional
quiet and stable up-trend, as seen sometimes in “bubble” periods in financial mar-
kets. We clearly see here that the estimation bias can represent up to 25% or so
of the mean estimated VaR. Whereas existing works suggest that the estimation
risk is of second-order importance when compared to the model mis-specification
(Berkowitz, 2001) or data contamination (Frésard et al., 2011), this simple illus-
tration shows, however, how important the model risk of risk models can be. In
our previous elementary illustration within the classical paradigm, we can easily
calibrate, in simulations, a correction based on some severe errors (adding, for

1Only a few recent papers (e.g., Kerkhof et al., 2010; Gouriéroux and Zakoı̈an, 2012; Breuer and
Csiszár, 2012-a) aim to take model risk into account in the computation of risk measures.
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instance in our case, an extra 25% buffer to the estimated normal quantile). But
what can a risk manager do in real situations when he does not know for sure the
“true” process behind, or the risk factor that is going to hit the market in the near
future?

Our first aim is to gauge the importance of model risk in a risk management
context, when adding other types of model risk, such as specification, data mea-
surement, manipulation, liquidity (see Derman, 1996), in a more realistic context
(outside the Gaussian paradigm) that deals with the main salient features of finan-
cial returns.

Our second aim is also to evaluate a simple strategy in order to at first confirm,
with real data, our quantitative assessment of the value of model risk given in the
previous controlled experiment with specific processes and, secondly, to propose
a systematic approach to approximate model risk in risk models. This strategy
merely consists of “learning from the model mistakes”, since it dynamically relies
on an adjustment of the VaR estimates (defining a buffer to be added to the
estimated VaR). The size of correction is thus calibrated thanks to the back-testing
framework of regulatory authorities – in such a way that the frequency of past VaR
exceptions always matches the expected probability.

The outline of the paper is as follows. Section II provides a brief survey on model
risk literature. Section III defines and illustrates the model risk in VaR estimates
in an extensive realistic simulation exercise. Section IV presents our practical
approach for calibrating adjusted empirical VaRs that deal with the model risk,
when applied to a real financial series. Section V concludes.

II. ABOUT LITERATURE ON MODEL RISK

Our work is linked to various bodies of research and our aim is to contribute the
general literature on model risks. While our approach is similar “in spirit” to the
Bayesian literature on risk forecasting, our objective is to adjust extreme quantiles
(such as VaR) in the context of financial risks to account for model uncertainty.

Generally speaking, model risks ultimately refer to inaccurate measures of a
variable of interest; relatively small changes in the estimation procedure (model,
method or sample) can modify the magnitude and even the sign of some important
decision variables. Several sources can be at the origin of such model error, such
as model misspecifications (e.g., Breuer et al., 2012) and estimation troubles (e.g.,
Lönnbark, 2010) – that are the main risks studied in the literature, as well as
from data contamination (Frésard et al., 2011) or liquidity drastic shortages (see
Derman, 1996, for a gentle typology).

As the first model risk, the one of estimation indeed occurs in every estimation
process; it is the risk associated with inaccurate estimations of parameters, due
to the estimator quality and/or limited sample of data (past and/or future), and/or
noise in the data. This estimation risk is the most discussed in the literature (see for
instance Gibson et al., 1999; and Talay and Zheng, 2002). Pritsker (1997) is one of
the first to discuss the estimation risk for VaR in the identically and independently
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distributed return setting (see also, more recently, Inui and Kijima, 2005, with
the same setting with the Expected Shortfall). Lönnbark (2010) quantifies the
uncertainty due to the estimation when forecasting multiple period VaR.

Estimation risk when forecasting risk with dynamic models has also been con-
sidered by Berkowitz and O’Brien (2002), focusing on the too conservative VaR
(at the time of publication), as well as Figlewski (2004) who examines the effect
of VaR estimation errors based on simulations. Also, Bao and Ullah (2004) study
the error in VaR estimates due, more specifically, to misspecified error distribu-
tion based on ARCH(1) models. Christoffersen and Gonçalves (2005) evaluate
the precision of common models and quantify the magnitude of the estimation
error by constructing confidence bands around the quantile forecasts. Chan et al.
(2007) also propose to construct a confidence interval for the extreme conditional
quantiles based on GARCH models with heavy-tailed innovations. More recently,
Escanciano and Olmo (2009, 2010 and 2011) propose to correct the (bootstrapped)
critical values in standard backtests on VaR to assess the estimation risk. Our work
also directly relates to the recent works of Gagliardini et al. (2010), who propose
Estimation and Granularity adjustments for VaR, and Gouriéroux and Zakoı̈an
(2012), who propose a new estimator of the VaR that allows the forecaster to make
a joint treatment of theoretical and estimation risks.

More generally, our work is also very similar in spirit to the work of West (1996),
who discusses when and how to adjust critical values for tests of predictive ability
in order to take parameter estimation uncertainty into account. Recent works
extend this approach in a Bayesian VaR framework, trying to solve the so-called
“Capital Charge Puzzle” when advocating that capital requirements were not so
large (at the time) when parameter uncertainty was taken into account (Pollard,
2007), and that dealing with uncertainty allows the risk manager to recover a very
conservative VaR (see Hoogerheide and van Dijk, 2010; Chen et al., 2012), most
of the time even more prudent than the supremum of a group of classical models
of VaR (Casarin et al., 2012). In a sense, our proposal is also close to the method
proposed by Hartz et al. (2006) who correct the Gaussian VaR with re-sampling
techniques in order to be as close as possible to the perfect model in terms of
frequency of occurrences of large errors.

However, we will hereafter adopt a rather different approach, even if similar,
trying to explicitly link a correction for uncertainty to the simple test that is imposed
by regulators; expressing furthermore the required correction as an additive buffer
for model risk as called for by the regulation. In other words, it will be easy for
the risk manager in our setting to translate the correction of VaR into penalty
avoidances expressed in euros. Moreover, we deal in one shot with all potential
model errors (estimation included, but not only) and we will accordingly adjust
levels of risk measures. While it is of course possible and useful to investigate the
effect of parameter variations on risk measures that are computed in a particular
parametric framework, as for instance in Bongaerts and Charlier (2009), our aim
here is to explicitly consider model risk as a separate risk factor (i.e., independent
of a special data generating process, DGP).
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The objective of this paper is, finally, similar to the one of Kerkhof et al. (2010),
who first propose a procedure to take model risk into account in the computation
of capital reserves calibrated on the backtesting framework of the regulators, as
well as Alexander and Sarabia (2012), who develop a methodology for quantifying
model risk in quantile risk estimates based on a maximum entropy criterion. Also,
in the same vein, Breuer and Csiszr (2012-a and 2012-b) and Breuer et al. (2012)
propose to quantify model risk as the largest loss from on a distribution which is
at a reasonable (Mahalanobis or Kullback-Leibler) distance to a reference density.

In this general context of related literature, our main contribution herein thus
consists of proposing a simple framework to compute risk measures robust to the
main model risks, based on an incremental buffer assessing the main valuable
properties of risk models.

III. MODEL RISK AND VAR COMPUTATIONS

We first illustrate, in a realistic simulation framework, the model risk of VaR esti-
mates, which is here defined as the consequence of two types of error due to a model
misspecification and a parameter estimation uncertainty. Various VaR computation
methods do indeed exist in the literature, from non-parametric, semi-parametric
and parametric approaches (e.g., Engle and Manganelli, 2001; Christoffersen,
2009). However, the historical-simulated VaR computation is still the one most
used by practitioners (Christoffersen and Gonçalves, 2005; Pérignon and Smith,
2010) and thus will serve as the reference throughout this article2.

Table 2 presents the estimated VaR as well as the mean, minimum and maximum
errors on these quantile estimates. Errors are defined by the differences between
the “true” asymptotic VaR (based on simulated DGP) and the imperfect historical-
simulated estimated VaR (because the latter are only approximately specified and
estimated with a limited data sample). Three different rolling time-windows (from
250 to 750 days in Panels A, B and C) and several levels of probability confidence
thresholds (three rows for each Panel) are considered. The results are presented for
three DGP for the underlying stock price with various intensities of jumps (Brow-
nian, Lévy and Hawkes3). The Brownian motion case is a standard in finance,
whilst a Lévy process allows us to take into account (negative) discontinuities in
prices (see Prigent, 2007; for traditional applications in quantitative finance of
such a process).

2For the sake of completeness, we also use in this setting a group of other well-known methodologies
for computing estimated quantiles, from GARCH to extreme density VaR (available to readers on
demand), with, at the end, the same qualitative result regarding the overall importance of model risk;
furthermore, no model was shown to be clearly superior on a statistical basis (i.e., required corrections
being of the same order for best models), even if, as our intuition tells us, final corrections appear to be
much lower for dynamic VaR models. We then first choose herein to stay with the industry benchmark
to be used as the reference along this note, just for highlighting the magnitude of model risk in such a
common approach.
3See e.g., Applebaum (2004), Bowsher, (2007), Prigent (2007), Aı̈t-Sahalia et al. (2010), Bacry et al.
(2011), for Lévy’s and Hawkes’ process definitions and uses in finance.
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Source: Simulations by the authors. These five illustrative figures were computed with
one series of 250 simulated daily returns using specific DGP (1.Brownian, 2. Lévy and
3. Hawkes), averaging the parameters estimated in Aı̈t-Sahalia et al. (2010, table 5) for
major stock markets. For this drawing, the annualized 99.50% estimated VaR are the same
with the three DGP because the extreme points are the same within these three simula-
tions, but the 99.00% and 95.00% annualized VaR are different. These five plots illustrate
respectively: the behaviour of the jumps within the Lévy process and then within the
Hawkes process; the three last plots illustrate a simulation of the returns using a Brownian,
a Lévy and a Hawkes process (see Table 2 below for precise definitions of processes in our
context).

Figure 1: An Illustration of Simulated Brownian, Lévy and Hawkes’ Processes
for a Series of 250 Returns.

When, finally, auto-regressivity in jumps is considered in Hawkes’ (1971) case,
the process is able to reproduce main documented characteristics of the finan-
cial returns such as sudden shocks, self-excitements, regimes, heteroskedasticity,
clustering of extremes, asymmetry and excess kurtosis, as illustrated in Figure 1,
with examples of a limited series of 250 returns following the three underlying
processes that are considered herein.

As reported in Table 2, and as intuitively expected, the estimated VaR is an
increasing function of the confidence level and the presence of jumps in the
process (Lévy’s and Hawkes’ cases). For a large number of trials, the mean bias
of the historical-simulated method is quite small (inferior to 1% in relative terms)
in the Brownian case, and rather insensitive to the number of data points in the
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sample. By contrast, this mean bias is rather large when jumps are considered
(with an amplitude of 10% to 27% in relative terms).4

Moreover, the observed range of potential relative errors (the difference between
the maximum and minimum estimated errors divided by the estimated VaR) is
substantial in our experiments, representing between around 40% of the VaR
levels in the best case (for the simple Brownian DGP over the longer sample) to
as high as 290% in the worst case scenario (for the Lévy DGP over the shorter
sample). Furthermore, the potential relative under-estimation of the “true” VaR
(too aggressive estimated VaR) is, in the main, large (ranging from 13% to 40%,
depending on the sample length and the quantile considered5). These results
suggest that the historical-simulated VaR should be corrected when safely taking
into account the riskiness of risk models.

IV. A SIMPLE PROCEDURE FOR ADJUSTING ESTIMATED VAR

We now present herein a simple procedure to calibrate a correction of VaR esti-
mates to account for the impact of the model errors, which could be applied by
a risk manager with real data when the “true” DGP is unknown. This procedure
is based on the “traffic light” test developed by the Basel Committee. The regula-
tory back-testing process is carried out by comparing the last 250 daily 99% VaR
estimates with corresponding daily trading outcomes.

The regulatory framework is based on the unconditional coverage test (Kupiec,
1995) and then only focuses, at the time, on the proportion of failures. This
test refers to the so-called “hit variable” associated to the ex post observation of
estimated VaR violations at the threshold α and time t , denoted IEV aR

t (α), which
is defined as:

I
EVaR(.)
t (α) =

{
1 if rt < −EVaR(P, α)t−1

0 otherwise,
(1)

where EVaR(.) is the Estimated VaR on a portfolio P at a threshold α, and rt is the
return on a portfolio P at time t , with t = [1, . . . , T ].

If we assume that the IEVaR
t (·) variables are Independently and Identically

Distributed, then, under the unconditional coverage hypothesis (Kupiec, 1995), the
total number of VaR exceptions (Cumulated Hits) follows a Binomial distribution
(Christoffersen, 1998), denoted B(T , α), such as:

HitEVaR(.)
T =

T∑
t=1

I
EVaR(.)
t (α) ∼ >

T →+∞
B (T , α) (2)

4The relative error of 27% corresponds to the probability 99.50% with a window of 250 days for the
Lévy DGP (i.e., 14.90 out of −54.26).
5The relative error of 40% is related to a probability of 99.50% in a 250 day window of Brownian
returns (i.e., −16.04 out of −39.95).
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A Perfect VaR (not too aggressive, but not too confident) in the sense of this
regulatory rule, is such that it provides a sequence of VaR denoted VaR(.)∗ (i.e. all
{VaR(P, α)∗t } for t = [0, T ]), that respects:

⎧⎨
⎩

T −1Hit VaR(.)∗
T < α

T −1
[
HitVaR(.)∗

T + 1
]

≥ α,
(3)

where HitVaR(.)∗
T (·) is the cumulated hit variable associated to the V aR(.)∗.

In other words, since the estimated VaR and the bounding range of violations
are known, we now have to search, amongst all possibilities, for the minimum
(unconditional) adjustment that allows us to recover a corrected estimated VaR
that respects condition (3) over the whole sample, i.e.:

adj(P, α) = q∗ = ArgMax
q∗∈IR

{VaR(P, α)∗t }

s.t. :⎧⎨
⎩

T −1HitVaR(.)∗
T < α

T −1
[
Hit VaR(.)∗

T + 1
]

≥ α,

with :

VaR(P, α)∗t = EVaR(P, α)t + q∗.

(4)

In the following, we consider a long data set, containing rich information about
the conditional and unconditional distributions of returns, which consists of daily
returns on the Dow Jones Industrial Average (DJIA) index from the 1st January,
1900 to the 15th October, 2010.6 This long data set is frequently used in empirical
studies since it offers a variety of behaviors of volatility and extreme returns (e.g.,
Sullivan et al., 2000; Chernov et al., 2003; Zumbach and Finger, 2010) and is long
enough for providing some robustness cautions.

Figure 2 represents the minimum adjustments (absolute errors) to be applied to
estimated VaR, denoted q∗, as solutions of the optimization program (4), for one-
year (two-year and three-year) historical-simulated VaR computed on the DJIA
over more than one century.

6Note here that the procedure can easily be applied to large multivariate portfolios of (non-linear) assets
as in any other traditional ex ante risk management strategy, since it only requires actual asset weights
and a (long) history of net asset values (altogether with the valid valuation formula for non-linear
pay-offs if any). Please note here that the very same exercise of calibrating the buffer for corrections of
VaR has been realized on other stock price and diversified portfolio series (with or without short-sale
constraints), with – at the end – similar qualitative results on the size of the required corrections. Also,
we use here a very long time-series to gauge the global validity of the approach, even if we generally
do not have at our disposal such long series in real management practices. However, companion tests
(available on request) show that less than one decade is necessary for reaching the final correction
(even in the worst case scenario).
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Source: Bloomberg; daily data of the DJIA index in USD from the 1st January, 1900
to the 15th October, 2010; computations by the authors. The first plot (on the left hand
side) represents the non-adjusted average annualized VaR level. The minimal adjustment is
represented in the second plot and is expressed in absolute value (on the right hand side).
The minimal adjustment necessary to respect the hit ratio criterion is here considered as a
proxy of the economic value of the model risk. The historical VaR is computed on a daily
horizon as an annualized empirical quantile using respectively 1 year, 2 years and 3 years
of past returns. Without any adjustment, the imperfect Estimated VaR is underestimated
(too permissive) in each of these cases.

Figure 2: Minimum Model Risk Adjustments associated to Historical-simulated
VaR.
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In other words, it represents the minimal global constants that we should have
added to the quantile estimates for having reached a VaR sequence that would
have passed the Hit test on the full sample for a considered level of confidence.
We observe that the historical-simulated error is quite significant for all quantiles
(between −0.5% and −7% in absolute terms, i.e., 15% or so in relative terms) and
significantly increases with the confidence level.

Besides, the smaller the estimation period, the more important the adjustment
(both in absolute and relative terms). This phenomenon can be explained by the
fact that using larger estimation periods is more likely to take into consideration
extreme realizations and crisis episodes within the considered sample.

V. CONCLUSION

Following Kerkhof et al. (2010) who have recently proposed a similar bias es-
timation correction, this note illustrates a practical method to incorporate model
risk into risk measure estimates, by adjusting the estimated VaR according to the
frequency of past exceptions. This VaR adjustment allows the risk manager a joint
treatment of theoretical and estimation risks, taking into account their possible
dependence.

We first show in simulations that the model risk can represent a significant part
of the risk measure and secondly, with real data, that the required correction may
be substantial (of the order of 10 – 40% of VaR levels in an extensive simulation,
and in the range of 1–15% for a real risky stock market index).

We have here focused on studying an historical-simulation VaR (since most
employed in financial institutions), a small data sample issue (because mere tests
use 250 observations) and the frequency rule (as defined by regulators). Since
we have now shown that model risk may play a decisive role in a normal risk
management strategy in such a traditional context, our work can be extended
in several ways in the future. First, the criterion we used here to quantitatively
enforce the definition of VaR, based on a prior in-sample estimation and used in
out-of-sample computations, could be generalized and complemented using extra
tests of the good qualities of a VaR model, such as the independence and the
limited magnitude of violations. Secondly, it may be interesting to use the metric
of correction in order to evaluate the efficiency of existing various methodologies
for computing VaR (the lower the correction, the better the model – see Boucher
et al., 2013). Finally, a complementary study of the sensitivity of the proposed
methodology to sample periods for several types of (non-linear) portfolios should
be worthy.
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