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Abstract
Following the recent crisis and the revealed weakness of risk management practices, regulators of devel-
oped markets have recommended that financial institutions assess model risk. Standard risk measures, such
as the value-at-risk (VaR), emerged during the 1990s as the industry standard for risk management and
become today a key tool for asset allocation. This paper illustrates and estimates model risk, and focuses on
the evaluation of its impact on optimal portfolios at various time horizons. Based on a long sample of US
data, the paper finds a non-linear relation between VaR model errors and the horizon that impacts optimal
asset allocations.

1. Introduction

The recent global financial crisis has focused a great deal of attention on the risk man-
agement practices of financial institutions around the world.1 Suddenly, too prudent
risk models (during calm periods) have become too aggressive (in turbulent periods).
A large variety of risk measures has been proposed in academic and practitioner lit-
eratures in order to avoid such a situation. Risk measures such as value-at-risk (VaR)
are currently used in various fields, namely, not only in the management policies and
international regulations for the financial (Basel II) and insurance (Solvency II)
sectors,2 but also for asset allocation, especially for long-term investors (e.g. Monfort,
2008; Levy and Levy, 2009). The quality of risk measure estimates may considerably
influence long-term asset allocation decisions, since assets are ranked and mixed on
the basis of their risk-return trade-offs at specific horizons.

This paper proposes an economical valuation of the consequences of model uncer-
tainty on VaR estimates, based on a backtesting framework, and then examines the
effects of the uncertainty of risk models on optimal portfolios at various time hori-
zons. We propose a correction method that is not directly dependent on an assumed
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data generating process, but rather on past failures of the model used. Our focus is
essentially realized on VaR, but the analysis can also be applied to other risk measures
such as the expected shortfall. From a long sample of US data, we find an inverse non-
linear relation between VaR model errors and the horizon that impacts the optimal
asset allocations.

While some papers have also considered the portfolio effects of parameter and
model uncertainty (e.g. Barberis, 2000; Pástor and Stambaugh, 2012),3 risk estimate
uncertainty has received far less attention. Nevertheless, the Basel III committee has
recently further recommended that most of the financial institutions evaluate model
risk (Basel Committee on Banking Supervision (BCBS), 2009). Indeed, model risk is
commonly disregarded in the development of risk models by the financial industry,
although well-known for peculiar price processes (e.g. Cont, 2006).4

The outline of the paper is as follows. Section 2 defines and illustrates the model
risk in VaR estimates. Section 3 explains our practical approach for calibrating
adjusted empirical VaRs that deal with the model risk. Section 4 presents the term-
structure of model risk on VaR estimates and its impact on optimal portfolios at
various time horizons. Section 5 concludes.

2. The Model Risk of VaR

The implications of over- or under-estimation of risks are diametrically different for
regulators and risk takers. However, prudential regulation leads to reconcile these
conflicting interests so that both under and over-exposures to risk lead to inefficiency.

The amendment to the initial Basel Accords (BCBS, 1996) was designed to encour-
age and reward institutions for superior risk management systems. A backtesting pro-
cedure, that compares actual returns with the corresponding VaR forecasts, was
introduced to assess the quality of internal models. The objective was to monitor the
frequency of the so-called “exceptions” when realized losses exceed the estimated
VaR. Therefore, appropriately constructed accurate risk measures, particularly robust
to model risks, are of paramount practical importance. Methods for the quantification
of this type of risk are not nearly as well developed as methods for the quantification
of market risk given a model, and the view is widely held that better methods to deal
with model risk are essential to improve risk management and to reinforce the global
international financial stability. Hence, the Basel III committee has proposed that
financial institutions assess model risk, whether they come from some mis-
specifications or estimation problems of risk models.5 In the finance literature, the
term “model risk” frequently applies to uncertainty about the risk factor distribution
(e.g. Boucher et al., 2012). More precisely, in our context, model risk of risk models
refers both to the range of plausible risk estimates, as well as the inability to properly
forecast risk realizations.

The model risk of risk models mainly comes from parameter estimation
errors and specification errors. The former are linked to the number of data points
used to estimate an assumed model, while the latter refer to the model risk stem-
ming from inappropriate assumptions about the form of the data generating
process.6

We first present hereafter the “multiplication factor” mechanism (or the so-called
“Traffic Light” approach) established by the Basel Committee (BCBS, 1996) to
account for the model risk of VaR estimates and, second, illustrations of the model
risk of VaR estimates based on three data generating processes.
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Basel Accords and Model Risk

The Basel II Accords (BCBS, 1996) stipulate that the daily capital requirement,
denoted CRqt, must be set at the higher of the previous day’s VaRs or the average
VaR over the last 60 business days d, multiplied by a factor k:

CRq VaR k VaRt t t d
d

= ×⎛
⎝

⎞
⎠−

−
−

=
∑max ; .1

1

1

60

60 (1)

The multiplication factor k has to be set within a range of 3–4 depending on the super-
visor’s assessment of financial institution’s risk management practices based on a
simple backtest. The multiplication factor is determined by the number of times losses
exceed the day’s VaR figure. The minimum multiplication factor of 3 can be inter-
preted as a compensation for both model risk and losses exceeding the VaR.7 The
increase in the multiplication factor is then designed to scale up the confidence level
implied by the observed number of exceptions to the 99% confidence level desired by
the regulators.

In calculating the number of exceptions, financial institutions are required to
compare the forecast VaR numbers with realized profit and loss figures for the previ-
ous 250 trading days. For precision, the 1988 Basel Accord (BCBS, 1988) was also
amended in 1996 to allow financial institutions to use internal models to determine
their VaR, while these financial institutions must demonstrate that their internal
models are sound (BCBS, 1996).

However, losses in most of the banks’ trading books during the last financial crisis
have been significantly higher than the minimum capital requirements under the
former Pillar I market risk rules, because VaR was underestimated. It led to the
revision of the Basel II market risk framework (2009). A stressed VaR requirement
was introduced, taking into account an observation period related to significant
losses.

Meanwhile, some recent empirical studies (see, for example, Berkowitz and
O’Brien, 2002; Gizycki and Hereford, 1998; Pérignon et al., 2008; Pérignon and Smith,
2010) have indicated that some financial institutions (at the time) overestimated their
market risks in disclosures to the appropriate regulatory authorities, which can imply
a costly restriction to the banks trading activity. Financial institutions may prefer to
report high VaR numbers to avoid the possibility of regulatory intrusions, while turbu-
lent periods reveal that these prudent VaRs were ex post, in fact, too aggressive. This
conservative risk reporting suggests that efficiency gains were feasible, at least before
the last major market turmoil.

Model Risk of VaR Estimates

We briefly illustrate hereafter the model risk of VaR estimates, which is here defined
in the following Figure as the consequences of two types of errors caused by a model
misspecification and a parameter estimation uncertainty. Various VaR computation
methods exist in the literature, from non-parametric, semi-parametric and
parametric approaches (e.g. Christoffersen, 2009). However, the historical simulated
VaR computation is still one of the most used by practitioners (Christoffersen and
Gonçalves, 2005; Sharma, 2012) and will serve as the main reference throughout this
article.
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Table 1 presents the estimated VaRs, as well as the mean, minimum and maximum
errors on these estimated VaRs. Errors are defined by the differences between the
“true” asymptotic VaR (based on simulated data generating processes) and the imper-
fect historical-simulated estimated VaRs (because the latter are approximately speci-
fied and estimated with a limited data sample). Three different rolling time-windows
(250, 300, and 350 days in Panels A, B and C)8 and several levels of probability confi-
dence thresholds (three columns for each Panel) are considered. The results are pre-
sented for three data generating processes for the underlying stock prices with various
intensities of jumps (Brownian, Lévy, and Hawkes9). Note that the auto-regressivity in
jumps considered in the Hawkes’ process permits reproduction of the main docu-
mented characteristics of financial returns, such as sudden shocks, self-excitement,
regimes, heteroskedasticity, the clustering of extremes, asymmetry, and excess kurtosis.

As expected, the estimated VaR is an increasing function of the confidence level
and of the presence of jumps in the process (Lévy and Hawkes cases). For a large
number of trials, the mean bias of the historical-simulated method is quite small (infe-
rior to 1% in relative terms) in the normal case. By contrast, this mean bias is quite
large when jumps are considered (with an amplitude from 10% to 30% in relative
terms10). Moreover, the range of model-risk errors is, as expected, more important
when a small sample is considered. It appears that the difference between “max VaR
error” and “min VaR error” (the range of error) decreases with the number of days
considered in the rolling window calibration, whatever the data generating process
and the confidence level.

The observed range of potential relative errors (the difference between the
maximum and minimum estimated errors divided by the estimated VaR) is substantial
in our experiments, representing between around 50% of the VaR levels in the best
case (for the simple Gaussian data generating process over the longer sample) to as
high as 263% in the worst case scenario (for the simple jump process over the shorter
sample). Furthermore, the potential relative under-estimation of the “true” VaR (an
over-aggressive estimated VaR) is, in the main, large (ranging from 10% to 30%,
depending on the sample length and the quantile considered). These results suggest
that the historical-simulated VaR should be corrected when safely taking into account
the riskiness of risk models.11

3. A Simple Procedure for Adjusting Estimated VaR

In reality, we never know the data generating process and risk. Portfolio managers tra-
ditionally face the problem of imagining a model that is realistic enough. We propose
herein another approach based on a simple economic procedure, to calibrate a correc-
tion on VaR estimates to account for the impact of model errors. This procedure is
grounded on the “Traffic Light” control procedure developed by the Basel Commit-
tee. The regulatory backtesting process is carried out by comparing the last 250 daily
99% VaR estimates with corresponding daily trading outcomes.

The regulatory framework uses the proportion of failures, based on the uncondi-
tional coverage test (Kupiec, 1995). This last test is based on the so-called “hit vari-
able” associated to the ex post observation of estimated VaR violations at the
threshold α and time t, denoted It

EVaR α( ), which is defined as such:

I
r EVaR P

t
EVaR t t. ,

,
( ) −( ) =

< − ( )⎧
⎨
⎩

α
α1

0
1if

otherwise
(2)
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where EVaR(.) is the estimated VaR on a portfolio P at a threshold α, and rt is the
return on a portfolio P at time t, with t = [1, . . . , T].

We consider HitT
VaR . *( ) ⋅( ) that is the cumulated hit variable12 associated with the

VaR(.)* denoted VaR(.)* (i.e. all { , *}VaR P tα( ) for t = [0, T]), that is the number of hits
over the period T, defined as such:

Hit IT
VaR

t
VaR

t

T
. * . * .( ) ( )

=
= ( )∑ α

1
(3)

In the sense of the regulation procedure, a perfect VaR (not too aggressive, but not
too confident) is such that it provides a sequence of VaR that respects:

T Hit

T Hit
T
VaR

T
VaR

− ( )

− ( )

<
+[ ] ≥

⎧
⎨
⎩

1

1 1

. *

. * .

α
α

(4)

In other words, since the estimated VaR and the bounding range are known, we now
have to search, among all possibilities, for the minimum (unconditional) adjustment
that allows us to recover a corrected estimated VaR that respects condition (4) over
the whole sample, i.e.

adj P q Max VaR P

T Hit

T Hit

q IR t

T
VaR

, { , *}

. .:
. *

α α

α

( ) = = ( )

<

∈

− ( )

−

*

s t
1

1
TT
VaR

t tVaR P EVaR P q

. * ,

:

, * , .

( ) +[ ] ≥
⎧
⎨
⎩

( ) = ( ) +

1 α

α α

with

*

(5)

Figure 1 represents the minimum adjustments (absolute errors) to be applied to the
estimated VaR, denoted q* as solutions of the (static) optimization program (5), for a
one-year historical-simulated VaR computed on the DJIA over more than one
century (from the 1 January 1900 to 13 September 2011). Three VaR methods are con-
sidered: the “popular” historical-simulated approach (Panel A), the parametric
normal approach (Panel B) and the semi-parametric RiskMetrics model developed by
JP Morgan (Panel C).

These adjustments thus represent the minimal global constants that we should have
added to the quantile estimations for having reached a VaR sequence that does not
reject the null hypothesis of the Hit test (no difference between theoretical and
empirical probabilities of VaR violations) over the whole sample, at the considered
levels of confidence. We observe that the historical-simulated error is quite significant
for all quantiles (between –.5% and –7% in absolute terms, i.e. 15% or so in relative
terms) and that the 5–95% confidence bounding range is small (some basis points in
general). The error significantly increases (in absolute terms) with the confidence
level, even when we have the full knowledge of one century of quotes.13 The average
annualized VaR appear much more aggressive based on the parametric normal and
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Figure 1. Average Annualized VaR and Associated Minimum Model Risk Adjustments
for 250 days

Source: Bloomberg; daily data of the DJIA index in US$ from 1 January 1900 to 13 September
2011. The first plot (on the left-hand side) represents the non-adjusted average annualized VaR
level. The minimal adjustment is represented in the second plot and is expressed in absolute
value (on the right-hand side). The minimal adjustment necessary to respect the hit ratio crite-
rion is here considered as a proxy of the economic value of the model risk. The historical,
normal and RiskMetrics VaRs are computed on a daily horizon as an annualized empirical
quantile using 250 days of past returns. Without any adjustment, the imperfect estimated VaR is
underestimated (too permissive) in each of these cases. The adjustments are calculated on the
entire VaR forecast sample. The aim is to see here if, when we have the maximum information
possible (a century of quotes or so), we still face model risks. The standard errors are computed
based on a block bootstrap method with windows of 10 years of daily returns. Computations by
the authors.
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the RiskMetrics methods, such as the minimal corrections (adjustments), are more
important with these two methods.

4. Model Risk, Horizon and Long-term Asset Allocations

We evaluate hereafter the term-structure of model risk on VaR estimates varying the
length of periods of interest and then focus on its impact on optimal portfolios, inte-
grating risk budgeting at various time horizons.

A Term-structure of Model Risk

In this subsection, VaR is used for quantifying the risk associated to asset allocations
that differ according to their component weights. We first aim to measure required
adjustments for the several considered horizons. The data correspond to the daily
Dow Jones Industrial Average index (DJIA, total return in US$) from 1 January 1900
to 13 September 2011.

In order to compute plausible long-term VaR, we use the surrogate data method
(Schreiber, 1998) for creating artificial realistic long-term series. This method explic-
itly allows us to keep some specified time-patterns for returns along a process of a
constrained randomization. More precisely, the algorithm is based on a reshuffling of
the original return data, with a test of the new generated series at each step, relying on
some constraints. After each series of random pairwise updates, some characteristics
of the new (resampled) data are computed and it is accepted, provided there is no
large difference in the parameters compared with the original return series ones.14

Figure 2 illustrates a group of 100 random series (out of the 30,000 created and used
hereafter).

The minimum adjustments (error terms in absolute values) for various time hori-
zons on the pseudo-DJIA series are represented in Figure 3. The adjustments repre-
sent the minimum surplus of VaR that we should have added to empirical VaR for not
being blamed by the regulators according to the Traffic Light control. Three VaR esti-
mating approaches are considered: the historical-simulated (Panel A), the parametric
normal (Panel B) and the RiskMetrics (Panel C) methods. Adjustment terms associ-
ated to VaR represented in this figure are annualized and determined depending on
the horizons from 1 to 50 years.

The negative correction implies that VaR should have been more prudent than
they were when model risk was not integrated. The magnitude of model risk is infe-
rior to 4% in absolute terms for the historical-simulated and Gaussian VaR. We
observe a non-linear relationship between the corrections on VaR estimates (on the
three estimates, namely historical, Gaussian and RiskMetrics) and the horizon con-
sidered, with a special inverse U-shaped relation for the historical-simulated VaR
(whatever the confidence level considered). Model risk of the historical-simulated
VaR is larger for short (below 5 years) and long-term horizons (superior to 40
years), than for mid-term horizons (10–40 years). On the contrary, the minimal
adjustment associated to the normal VaR is near zero at long-term horizons. With
the RiskMetrics model, while the adjustment appears positive for mid-term and
long-term horizons (too conservative VaR), at a 6-year horizon, the correction is
quite large.15 The intuition at this stage is that model risk may have strong conse-
quences on asset allocations since the horizon as well as the method for VaR com-
putations have their importance.
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Impact on Long-term Asset Allocations

Generally speaking, long-term investors face a dilemma in bad market conditions:
ceteris paribus, when prices fall, one may guess that relative valuations might be better
in the long run (specifically for long-term horizons) since prices move from a lower
level; this makes stocks more attractive in the short-term. However, if the weight in
the risky asset is reinforced, risk increases and potential losses might be more severe
in the short-term.

Short-term and long-term arguments for reducing or increasing risk are here
opposed. A safety first criterion,16 which focuses on loss probabilities, may help the
investor to solve the problem, imposing a limit on some long-term positive reasoning.
However, uncertainty on risk measures might also be at stake.

From a theoretical point of view, asset allocations integrating risk budgeting
(safety first criteria) can both be explained within the maximization of the expected
utility framework (Basak, 1995, 2002) or within the so-called “Prospect Theory” of
Kahneman and Tversky (1979) with a loss-averse agent (Berkelaar et al., 2004;
Gomes, 2005). An insured portfolio is thus optimal when the investor has a decreasing
risk aversion (Kingston, 1989).

The link between the risk aversion and guaranteed portfolio is thus clearly estab-
lished and will be addressed hereafter.

Let us suppose that we are at time T and we want to write the portfolio optimiza-
tion program corresponding to an investor who buys and holds some assets until the
horizon H. In order to simplify the theoretical relation without loss of generality, we
first, hereafter, suppose that there are only two assets in the market (a risky and a
riskless one)17 and that the real interest rate served on the riskless asset is constant

Driginal Series
105

104

103

102

101

01/00 12/09 12/19 11/29 11/39 11/49 10/59 10/69 09/79 08/89 08/99 08/09

Simulated Series

Figure 2. An Illustration of some Artificial DJIA-based Series

Source: Bloomberg; daily data of the DJIA index in US$ from 1 January 1900 to 13 September
2011. The figure plots the semi-logarithm prices of the original DJIA series and the simulated
series. The simulated series are computed by the surrogate data method (Schreiber, 1998) for
creating 100 artificial realistic long-term series (randomly chosen among the 30,000 created and
used hereafter). Computations by the authors.
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and equals to rf. If we note WT = 1 as the initial wealth and ω the weight in the risky
asset, the wealth of the agent at horizon H reads:

W r H r H r rT H f f T T H+ + += −( ) ( ) + + + +( )1 1ω ωexp exp .� (6)

Moreover, let us suppose that preferences of the investor are well described by a
power utility function such as:
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Figure 3. Term-structure of Historical-simulated 1–50-year VaR Models for level 99.5%

Source: Bloomberg; daily data of the DJIA index in US% from 1 January 1900 to 13 Septem-
ber 2011. The minimal adjustment, (in absolute value) necessary to respect the hit ratio
criteria, is considered as a proxy of the economical value of the model risk and here is
static and annualized. The historical, normal and RiskMetrics VaRs are computed on various
horizons (from 1 to 50 years), as an empirical quantile on a rolling time-window of 1305
past returns (the whole sample, corresponding to the maximum information). The adjust-
ment terms associated with the historical VaR presented in this figure are calculated with
respect to time horizons, then annualized, and finally smoothed according to a third-degree
polynomial adjustment from 1 to 50 years. The standard errors are computed based on a
block bootstrap method with windows of 10 years of daily returns. Computations by the
authors.
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v W W( ) = −( ) −1 1γ γ , (7)

where γ is the risk aversion coefficient.
We can write the cumulated excess return on the risky asset on period H as such:

R r r rT H T T T H+ + + += + + +1 2 � . (8)

The investor who follows a buy-and-hold strategy would adopt an optimal asset allo-
cation that is a solution of the following optimization program (Barberis, 2000):

ArgMax
ω

γω ω
γ∈

+
−

+

−( ) ( ) + +( )[ ]
−

⎧
⎨
⎩

⎫
⎬
⎭IR

T
f f T HE

r H r H R1

1

1exp
, (9)

under the following constraints:

VaR loss constraint

budget constraint
α

ω
W WT H+( ) ≥ ( )

≤ ≤ ( ){ min

,0 1

where ET(.) is the conditional expectation at time T, VaRa(WT+H) the maximum poten-
tial loss at a threshold α for an horizon H, and Wmin the minimum capital reserve (cor-
responding to the targeted pseudo-guarantee at the horizon H).

Figure 4 represents asset allocations for various horizons (from 1 to 50 years), as
well as the ratio of minimum adjustment for model risk (between VaR with or par-
tially without model risk) corresponding to the same horizon. We consider three main
asset classes: equities, bonds and money market products. Equities have a high risk
and return on the global sample, while bonds have moderate risk and return, and
finally, cash is riskless in nominal terms. In reality, cash is exposed to an inflation risk,
which is modest since the 1980s with the so-called “Great Moderation”, so that it is
conventional to ignore this risk in order to simplify the analysis. However, long-term
investors face a common problem: how to maintain the purchasing power of their
assets over time and achieve a level of real returns consistent with their investment
objectives? Thus, we herein consider real returns18 in optimal allocation exercises. On
the left y axis in Figure 4, safety first optimal weights for each asset class are repre-
sented (maximization of the expected return under a criterion of VaR at 99.5%), while
the right y axis reports the level of the ratio of the required adjustment versus the raw
empirical VaR on the corresponding relevant horizons. We use here data extracted
from Datastream from 30 March 1973 to 13 September 2011.19

This figure indicates that, for long-term horizons, VaRs are considerably under-
estimated and the ratio of the correction term out of the uncorrected VaR expands
exponentially with the investment horizon. This correction ratio reaches 100% for the
50-year horizon in our simulations, which indicates that the extreme loss is twice the
one considered when model risk is ignored, leading to an asset allocation with a very
different extreme risk.

Table 2 focuses on the optimal weights in equities when considering, or not,
adjusted VaR for model risk. This table presents (non-adjusted for model risk)
optimal allocations in equities, as well as the over-weight computed as the difference
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between the non-adjusted optimal weight and the model risk adjusted optimal weight,
for various targeted period VaR of real returns (0%, 1%, 2%), horizons (from 5 to 35
years) and two confidence levels (95% in Panel A and 99.5% in Panel B). This table
shows that given the other characteristics of stocks (in terms of performance and vola-
tility), the model risk effect on the “equity” class in the optimal portfolios is more
limited at very long-term horizons but significant up to 25 years.20

5. Conclusion

In this paper, we first illustrate and estimate the model risk of risk models (see also
Boucher and Maillet, 2013) and we evaluate its impact on long-term asset allocations.
First, we evaluate the simple effect of estimation and specification risks on VaR esti-
mates. Second, we propose a general method to compute risk measures robust to the
main model risks. Third, we then evaluate the impact of corrected VaR estimates on
the optimal asset allocations, integrating risk budgeting, at various time horizons.

Based on a US database, we find that model risk is widely neglected by the main
risk models in asset allocation exercises. Our results suggest a non-linear relationship
between the corrections on VaR estimates and the horizon considered. This non-linear
relation exhibits an inverse U-shaped pattern for the historical-simulated VaR (what-
ever the confidence level considered). In the case of the mainstream risk model
(historical-simulated VaR), model risk is thus larger for short (below 5 years) and
long-term horizons (superior to 40 years) than for mid-term horizons (10–40 years).
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Figure 4. Time-horizon Safety First Allocations in the Main Asset Classes and Histori-
cal VaR Errors

Source: DataStream; daily data from 30 March 1973 to 13 September 2011. The asset allocation
scale is reported on the left axis and the model risk adjustment relative to the estimated VaR
without correction (bold curve) is located on the right axis. The asset allocation consists of a
maximization, for each time horizon (50, 49, . . . , 1), of the agent utility function for a risk aver-
sion coefficient set to 0 (aggressive agent) under a 99.5% VaR constraint of being positive at
the specified horizon. We here use 30,000 simulated surrogate real series, built with the histori-
cal daily series of 1973–2011, for generating returns considered here on each horizon. Computa-
tions by the authors.
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Moreover, based on the optimal adjustment procedure to obtain a sequence of VaR
that allows us to go through the validation tests of market authorities, we show that
the long-term asset allocation (for the main asset classes on the European market) is
significantly modified. The “equity” class in optimal portfolios is indeed reduced on all
the given horizons up to 25 years. Our results suggest that stocks are less appealing to
long-horizon investors when considering the risk model of model risks than conven-
tional wisdom would suggest, when no model risk is considered.

The same metric—the size of the required buffer—could be used to gauge the rel-
evance of any proven model (among theoretically justified models) and allow the risk
manager to compare them on that basis. However, it would be worthy of interest to
study more extensively the model risk of the proposed model risk correction (see
Boucher et al., 2012).

The next steps in our research agenda will consist, first, of investigating the differ-
ences in the suggested correction for model risk in terms of level and dynamics for
different types of assets (including real estate, commodities and other diversifying
vectors of investments) and countries/regions in an international perspective. Second,
we have to further examine the kind of processes (stability, breaks, jumps, persistence,
etc.) followed by the model risk correction in link with the global macro-financial
environment. Third, we should be able to consider other valuable properties of VaR
(such as the size and dependence of exceptions and not only their frequency) when
we calibrate model risk correction (see Boucher et al., 2012). Finally, investigating
asset allocation decisions, while including model uncertainty about both risks and
expected returns, would also offer an interesting direction for future researches.
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Notes

1. For example, JP Chase reported 5, Credit Suisse 7 and UBS 16 exceedances based on the 1%
VaR for a one day forecasting horizon in Q3–2007, which requires a maximum of 0.63
exceedance given the probability level of 1% (Jorion, 2009).
2. The risk estimates of these models are used to determine capital requirements and associ-
ated capital costs of financial institutions, depending in part on the ex post quality of the recent
VaR forecasts.
3. Focusing on the uncertainty about how to model the predictive distribution of future asset
returns.
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4. Only a few recent papers (e.g. Kerkhof et al., 2010; Gouriéroux and Zakoïan, 2012;
Alexander and Sarabia, 2012) aim to take model risk into account in the computation of risk
measures.
5. In July 2009, the Basel Committee on Banking Supervision issued a directive (“Revisions to
the Basel II Market Risk Framework”) requiring that financial institutions quantify model risk.
The Committee further stated that two types of risks should be taken into account: “the model
risk associated with using a possibly incorrect valuation, and the risk associated with using
unobservable calibration parameters”. The resulting adjustments must impact Tier I regulatory
capital, and the directive was to be implemented by the end of 2010.
6. These two sources of error are neither exclusive nor exhaustive. Granularity errors, measure-
ment errors, and liquidity risk are also at the origin of model errors (see, e.g. Boucher et al.,
2012).
7. Using the Chebyshev inequality, Stahl (1997) showed that a multiplier of 3 is reasonable to
account for a part of the model risk. Indeed, the Chebyshev inequality can be transformed to a
VaR inequality where a prudent daily VaR (null averaged return) can be expressed as a multi-
ple of a daily parametric-Gaussian VaR, with a multiple of 2.71 at the 5% level and 4.29 at the
1% level. Note that, based on the Cantelli inequality (the one-sided variant of the Chebyshev
inequality), these multiples are respectively equal to 2.64 and 4.27. However, these inequalities
transform a specification risk (on the distribution of returns) into an estimation risk (on the
standard deviation of returns).
8. The regulatory suggestion is to use (at least) 250 days (BCBS, 1996).
9. See Applebaum (2004) and Aït-Sahalia et al. (2012) for Lévy and Hawkes process
definitions.
10. The relative error of 30% corresponds to the probability of 99.90% with a window of 250
days for the Lévy DGP (i.e. –22.74 out of –73.74).
11. Note that the model uncertainty problem becomes even more severe in a continuous-time
world or with intraday data where jumps occur quite often. However, in this paper we focus on
crucial consequences of such model risk on asset allocation, so that the daily frequency is the
highest frequency considered in our analyses.
12. Note that, if we assume that the exceptions or hits are independently and identically
distributed then, under the unconditional coverage hypothesis (Kupiec, 1995), the total
number of VaR exceptions (cumulated hits) follows a binomial distribution (Christoffersen,
1998).
13. Besides this, complementary tests (on 500 and 750 sample days; related results are available
on request) show that the smaller the estimation period, the more important the (dynamic)
adjustment (both in absolute and relative terms) for the historical method. This phenomenon
can be explained by the fact that using larger estimation periods more likely leads to taking into
consideration extreme realizations and crisis episodes.
14. In our case: the first four moments, the first autocorrelation coefficient on returns, the first
significant squared return autocorrelation coefficient, the freedom parameter of a t-student,
the number of breaks, the long memory coefficient and the mean-reverting index, are all
tested, and the new series is accepted if the quadratic relative difference in parameters is infe-
rior to 10%.
15. The shape of these corrections is similar for other confidence levels of VaR. We show that,
for levels 95% and 99%, the results are very close to those presented in Figure 3. The shape of
the minimum adjustments represented is, globally speaking, similar to whatever the quantile
considered (related results are available on request).
16. The safety first criterion advocates the minimization of the probability of outcomes below a
certain “disaster” level (e.g. Levy and Levy, 2009).
17. This relation can be extended to several assets with no difficulties.
18. With a linear interpolation of the monthly Consumer Price Index to compute a daily price
index.
19. The “Equity” asset class is represented by a composite index of 95% of the MSCI Europe
+5% MSCI World; the “Bonds” asset class comes from the US TRSY/AGCY Master AAA
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index and JPM MAG EMU GBI AAA ALL MATS index (when available) and for the “Money
Market”, the Bundesbank Interest Rate index and the Euro Overnight Index Average index
(when available).
20. Note that these results remain qualitatively the same when a short-sale constraint is no
longer considered. Moreover, these results are robust to various simulations and optimization
programs (both results are available upon request).
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